删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

无穷维Hilbert空间中的多集分裂可行性问题

本站小编 Free考研考试/2021-12-27

无穷维Hilbert空间中的多集分裂可行性问题 张石生1,2, 王刚1, 李向荣3, 陈志坚31. 云南财经大学统计数学学院, 昆明 650221;
2. 中国医科大学通识教育中心, 台中 40402;
3. 香港理工大学应用数学系, 香港 Multiple-set Split Feasibility Problem in Infinite-dimensional Hilbert Spaces ZHANG Shisheng1,2, WANG Gang1, H.W. Joseph3, Lee C.K. Chan31. College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China;
2. Center for General Education, China Medical University, Taichung 40402, China;
3. Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong, China
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(274 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文的目的是提出和研究一种算法,用以求解无穷维Hilbert 空间中的多集分裂可行性问题. 文中所介绍的结果改进和推广了 Moudafi [Inverse Problem,26 (2010),055007],Xu [Inverse Problems,26 (2010),105018;22 (2006),2021-2034],Censor 等人 [J. Convex Anal.,16 (2009),587-600],Censor et al. [Inverse Problems 21 (2005),2071-2084],Masad,Reich [J. Nonlinear Convex Anal. 8 (2007),367-371],Censor 等人 [J. Math. Anal. Appl.,327 (2007),124-1256],Yang [Inverse Problem,20 (2004),1261-1266] 及其他一些人的最近的结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2012-03-22
PACS:O177.91
基金资助:国家自然科学基金(No.11361070)资助项目
引用本文:
张石生, 王刚, 李向荣, 陈志坚. 无穷维Hilbert空间中的多集分裂可行性问题[J]. 应用数学学报, 2017, 40(2): 161-169. ZHANG Shisheng, WANG Gang, H.W. Joseph, Lee C.K. Chan. Multiple-set Split Feasibility Problem in Infinite-dimensional Hilbert Spaces. Acta Mathematicae Applicatae Sinica, 2017, 40(2): 161-169.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I2/161


[1] Censor Y, Elfving T. A multi-projection algorithm using Bregman projections in a product space. Numer. Algorithms, 1994, 8: 221-239, 1272-1276
[2] Byrne C. Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Problem, 2002, 18: 441-453
[3] Censor Y, Bortfeld T, Martin B, Trofimov A. A unified approach for inversion problem in intensity-modulated radiation therapy. Phys. Med. Biol., 2006, 51: 2353-2365
[4] Censor Y, Elfving T, Kopf N, Bortfeld T. The multiple-sets split feasibility problem and its applications. Inverse Problem, 2005, 21: 2071-2084
[5] CensorX Y, Motova A, Segal A. Pertured projections and subgradient projections for the multiple-setssplit feasibility problem. J. Math. Anal. Appl., 2007, 327: 1244-1256
[6] Xu H K. A variable Krasnosel'skii-Mann algorithm and the multiple-sets split feasibility problem. Inversi Problem, 2006, 22: 2021-2034
[7] Yang Q. The relaxed CQ algorithm for solving the split feasibility problem. Inverse Problem, 2004, 20: 1261-1266
[8] Zhao J, Yang Q. Several solution methods for the split feasibility problem. Inverse Problems, 2005, 21: 1791-1799
[9] Kim T H, Xu H K. Convergence of the modified Mann's iteration method for asymptotically stric pseudo-contractions. Nonlinear Anal. TMA, 2008, 68(9): 2828-2836
[10] Aoyama K, Kimura W, Takahashi W, Toyoda M. Approximation of common fixed points of acountable family of nonexpansive mappings on a Banach space. Nonlinear Anal., 2007, 67(8): 2350-2360
[11] Moudafi A. The split common fixed point problem for demi-contractive mappings. Invers Problem, 2010, 26: 055007 (6pp)
[12] Xu H K. Iterative methods for split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Problem, 2010, 26: 105018 (17pp)
[13] Censor Y, Segal A. The split common fixed point problem for directed operators. J. Convex Anal., 2009, 16: 587-600
[14] Masad E, Reich S. A note on the multiple-set split feasibility problem in Hilbert space. J. Nonlinea Convex Anal., 2007, 8: 367-371

[1]朴勇杰. ω-连通空间上弱φ-映射族的不动点,重合点和聚合不动点[J]. 应用数学学报, 2017, 40(3): 461-470.
[2]刘英, 何震, Noor Muhammad Aslam. Banach空间中关于广义变分不等式的杂交投影算法[J]. 应用数学学报, 2016, 39(4): 495-504.
[3]张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480.
[4]邓喜才, 向淑文. 不确定下广义博弈强Berge均衡的存在性[J]. 应用数学学报, 2015, 38(2): 201-211.
[5]朴勇杰. 拟度量空间上满足收缩条件的映射(族)的不动点和公共不动点[J]. 应用数学学报, 2015, 38(2): 261-272.
[6]朴勇杰, 金海兰, 南华. 度量凸空间上具有唯一公共不动点的非自集值映射族[J]. 应用数学学报(英文版), 2014, 37(3): 437-448.
[7]魏利, Ravi P. Agarwal. 含有广义p-Laplace算子的抛物边值[J]. 应用数学学报(英文版), 2014, 37(1): 1-12.
[8]赵昕, 常小军. 一类分数阶椭圆型方程解的多重性[J]. 应用数学学报(英文版), 2014, 37(1): 138-144.
[9]朴勇杰. 度量凸空间中Lipschitz型非自映射族的唯一公共不动点[J]. 应用数学学报(英文版), 2013, 36(3): 454-462.
[10]刘英. Banach空间中关于变分不等式组与严格伪压缩映射的粘滞逼近法[J]. 应用数学学报(英文版), 2013, 36(2): 324-336.
[11]朴勇杰. 拓扑空间上的不动点和具有上下界的广义平衡问题[J]. 应用数学学报(英文版), 2012, (6): 1082-1090.
[12]赵良才, 张石生. 广义平衡与不动点问题的黏性逼近[J]. 应用数学学报(英文版), 2012, (2): 330-345.
[13]俞建. 关于良定问题[J]. 应用数学学报(英文版), 2011, 34(6): 1007-1022.
[14]张树义. 赋范线性空间中渐近拟伪压缩型映象不动点的修改的广义Ishikawa迭代逼近[J]. 应用数学学报(英文版), 2011, 34(5): 886-894.
[15]崔玉军, 孙经先. Banach空间中二阶微分方程三点边值问题的正解[J]. 应用数学学报(英文版), 2011, 34(4): 743-751.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14292
相关话题/应用数学 空间 统计 公共 分数