删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类非线性分数阶微分方程多点积分边值问题解的存在性

本站小编 Free考研考试/2021-12-27

一类非线性分数阶微分方程多点积分边值问题解的存在性 张福珍1, 刘文斌2, 王刚21. 九州职业技术学院高等数学教研室, 徐州 221116;
2. 中国矿业大学数学学院, 徐州 221116 Existence of Solutions for Nonlinear Differential Equations of Fractional Orders Boundary Value Problem with Multi-point Integral Boundary Conditions ZHANG Fuzhen1, LIU Wen-bin2, WANG Gang21. Advanced Mathematics Teaching and Research Office, Jiuzhou Polytechnic, Xuzhou 221116, China;
2. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(275 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究非线性分数阶积分边值问题

解的存在性,其中D0+α+I0+α分别是标准的Riemann-Liouville型分数阶导数和积分,利用不动点定理得到该边值问题解的存在性和唯一性结果,并举例验证了结果的合理性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2011-11-23
PACS:O175.8
基金资助:国家自然科学基金(11271364)资助项目
引用本文:
张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239. ZHANG Fuzhen, LIU Wen-bin, WANG Gang. Existence of Solutions for Nonlinear Differential Equations of Fractional Orders Boundary Value Problem with Multi-point Integral Boundary Conditions. Acta Mathematicae Applicatae Sinica, 2017, 40(2): 229-239.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I2/229


[1] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science B.V., 2006
[2] Sabatier J, Agrawal O P, Machado J A. Advances in Fractional Calculus. Dordrecht: Springer-Verlag, 2007
[3] Lakshmikantham V, Leela S, Vasundhara Devi J. Theory of Fractional Dynamic Systems. Cambridge: Cambridge Academic Publishers, 2009
[4] Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives. New York: Gordon and Breach Science Publishers, 1993
[5] Wang G, Liu W, et al. Existence results for a coupled system of nonlinear fractional 2m-point boundary value problems at resonance. Advances in difference equations, 2011,1:1-17
[6] Lakshmikantham V, Vatsala A S. General uniqueness and monotone iterative technique for fractional differential equations. Applied Mathematics Letters, 2008, 21: 828-834
[7] Ahmad B, Nieto J J. Anti-periodic fractional boundary value problems. Computers and Mathematics with Applications, 2011, 62: 1150-1156
[8] Wang G, Liu W, et al. The existence of solutions for a fractional 2m-point boundary value problems. Journal of Applied Mathematics, 2012,19:1-7
[9] Diethelm, K, Ford, N J. Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications, 2002, 265: 229-248
[10] Bai C. Positive solutions for nonlinear fractional differential equations with coefficient that changes sign. Nonlinear Analysis, 2006, 64: 677-685
[11] Hu Z, Liu W. Solvability for fractional order boundary value problems at resonance. Boundary Value Problems, 2011, 20: 1-10
[12] Su X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Applied Mathematics Letters, 2009, 22: 64-69
[13] Ahmad B, Alsaedi A, Alghamdi B S. Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Analysis, 2008, 9: 1727-1740
[14] Ahmad B, Alsaedi A. Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions. Nonlinear Analysis, 2009, 10: 358-367
[15] Boucherif A. Second-order boundary value problems with integral boundary conditions. Nonlinear Analysis, 2009,70: 364-371
[16] Chang Y K, Nieto J J, Li W S. On impulsive hyperbolic differential inclusions with nonlocal initial conditions. Journal of Optimization Theory and Applications, 2009, 140: 431-442
[17] Ahmad B, Nieto J J. Existence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions. Boundary Value Problems, 2009,1:1-11
[18] Ahmad B, Otero-Espinar V. Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions. Boundary Value Problems, 2009,1:1-11
[19] Ahmad B, Nieto J J. Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topological Methods in Nonlinear Analysis, 2010, 35: 295-304
[20] Ahmad B. Existence of solutions for fractional differential equations of order q ∈ (2, 3] with anti-periodic boundary conditions. Journal of Applied Mathematics and Computing, 2010, 34(1): 385-391
[21] Wang G, Ahmad B, Zhang L. Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Analysis, 2011, 74(3): 792-804
[22] Smart D R. Fixed Point Theorems. Cambridge University Press, 1980

[1]王忠, 张鹏军, 曹玉峰. 边界条件中带有谱参数且在多个点不连续的Sturm-Liouville算子的特征问题[J]. 应用数学学报, 2016, 39(4): 505-522.
[2]李耀红, 张海燕. 一类分数阶微分方程积分边值问题的可解性[J]. 应用数学学报, 2016, 39(4): 547-554.
[3]田元生, 李小平. 一类带p-Laplacian算子分数阶微分方程边值问题的正解[J]. 应用数学学报, 2016, 39(4): 481-494.
[4]张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480.
[5]沈文国. 四阶边值问题单侧全局分岐和结点解[J]. 应用数学学报, 2016, 39(3): 463-472.
[6]王金华, 向红军. 无穷分数差分方程三点边值问题[J]. 应用数学学报, 2015, 38(6): 1029-1039.
[7]贺飞, 李斌. 含有推广的P-距离的不动点定理[J]. 应用数学学报, 2015, 38(6): 961-967.
[8]邱崇, 王承富. 一类与椭圆型边值问题相关的重排优化问题[J]. 应用数学学报, 2015, 38(6): 976-986.
[9]韩祥临, 石兰芳, 许永红, 莫嘉琪. 分数阶双参数奇摄动非线性微分方程的渐近解[J]. 应用数学学报, 2015, 38(4): 721-729.
[10]张立新. 一类含积分边界条件的分数阶微分方程的正解的存在性[J]. 应用数学学报, 2015, 38(3): 423-433.
[11]欧伯群, 姚晓洁. 一类中立型Cohen-Grossberg神经网络概周期解的存在唯一性[J]. 应用数学学报, 2015, 38(2): 212-221.
[12]陈静. 一类带渐近二次非线性项的分数阶Dirichlet边值问题解的存在性[J]. 应用数学学报, 2015, 38(1): 53-66.
[13]殷慰萍. 一类复蒙日-安培方程Dirichlet问题数值解探讨[J]. 应用数学学报(英文版), 2014, 37(5): 786-796.
[14]王峰, 崔玉军. 二阶隐式微分方程周期边值问题的正解[J]. 应用数学学报(英文版), 2014, 37(5): 946-955.
[15]高洁, 周玮. 一类非线性分数阶微分方程边值解的存在性和唯一性[J]. 应用数学学报(英文版), 2014, 37(3): 470-486.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14298
相关话题/应用数学 分数 统计 学报 数学学院