删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Conformable分数阶单机无穷大电力系统分岔与混沌研究

本站小编 Free考研考试/2021-12-27

严波1,贺少波2
1. 湖南文理学院计算机与电气工程学院,常德 415000; 2. 中南大学物理与电子学院,长沙 410083
出版日期:2020-06-25发布日期:2020-08-25




The Bifurcation and Chaos Analysis of Conformable Fractional Order Unipolar Infinite Power System

YAN Bo1 ,HE Shaobo2
1.College of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde415000; 2. School of Physics and Electronics, Central
South University, Changsha 410083
Online:2020-06-25Published:2020-08-25







摘要



编辑推荐
-->


基于Conformable分数阶微分定义和Adomian分解 算法, 设计了Conformable分数阶非线性系统半解析解算法 和Lyapunov指数谱算法. 采用Lyapunov 指数谱、分岔图和吸引子相图分析了Conformable分数阶单机无穷大电力系统中的分岔与混沌现象, 揭示了系统状态随参数和微分阶数变化时的规律以及系统走向混沌的道路. Matlab仿真数值模拟结果 表明: Conformable分数阶单机无穷大电力系统的动力学特征丰 富, 系统产生混沌的最小阶数为0.41, 系统初值的改变直接影 响系统状态, 并发现了多涡卷混沌吸引子和共存吸引子, 功角失稳是产生多涡卷吸引子的根本原因. 研究结果表明了求解算法的有效性与Conformable 分数阶单机无穷大电力系统动力学特性 的丰富性.

分享此文:


()


[1]张丽娟,庄需芹,赵宜宾,王福昌. 生境修复对具有Monod-Haldane功能反应的食饵捕食者系统的影响分析[J]. 系统科学与数学, 2014, 34(9): 1138-1152.
[2]黎日松. 关于周期吸附系统的分布混沌的注记[J]. 系统科学与数学, 2012, 32(2): 237-243.
[3]尹建东;周作领. 拟弱几乎周期点的等价定义与系统的混沌性[J]. 系统科学与数学, 2010, 30(8): 1156-1162.

-->

PDF全文下载地址:

http://sysmath.com/jweb_xtkxysx/CN/article/downloadArticleFile.do?attachType=PDF&id=13903
相关话题/系统 分数 数学 科学 湖南