删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有一般复发现象的疾病模型的全局稳定性

本站小编 Free考研考试/2021-12-27

具有一般复发现象的疾病模型的全局稳定性 宋海涛1, 刘胜强21. 山西大学复杂系统研究所, 太原 030006;
2. 哈尔滨工业大学数学系, 哈尔滨 150001 Global Stability for Disease Model with General Relapse Phenomenon SONG Haitao1, LIU Shengqiang21. Complex Systems Research Center, Shanxi University, Taiyuan 030006, China;
2. Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(342 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了具有一般复发现象和非线性发生率的疾病模型的动力学性质,其中模型是具有无穷分布时滞的微积分方程.该模型描述了包含疱疹等传染病的一般复发现象.利用一致持久性理论和李雅普诺夫函数,我们证明了基本再生数R0决定的系统的全局动力学性质:当R0≤1时,疾病灭绝;当R0>1时,疾病持久生存,并且正平衡点是全局吸引的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2012-05-08
PACS:O193
基金资助:国家自然科学基金(11471089,11601291)资助项目.
引用本文:
宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48. SONG Haitao, LIU Shengqiang. Global Stability for Disease Model with General Relapse Phenomenon. Acta Mathematicae Applicatae Sinica, 2017, 40(1): 37-48.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I1/37


[1] Blower S, Porco T, Darby G. Predicting and Preventing the Emergence of Antiviral Drug Resistance in HSV-2. Nature Medicine, 1998, 4(6):673-678
[2] Tudor D. A Deterministic Model for Herpes Infections in Human and Animal Populations. SIAM Review, 1980, 32(1):136-139
[3] Van den Driessche P, Zou X. Modeling Relapse in Infectious Diseases. Mathematical Biosciences, 2007, 207(1):89-103
[4] Van den Driessche P, Wang L, Zou X. Modeling Diseases With Latency and Relapse. Mathematical Biosciences and Engineering, 2007, 4(2):205-219
[5] Gao S, Chen L, Nieto J, Torres A. Analysis of a Delayed Epidemic Model with Pulse Vaccination and Saturation Incidence. Vaccine, 2006, 24(35):6037-6045
[6] Liu W, Hethcote H, Levin S. Dynamical Behaviour of Epidemiological Models with Nonlinear Incidence Rates. Journal of Mathematical Biology, 1987, 25(4):359-380
[7] Liu W, Levin S, Iwasa Y. Influence of Nonlinear Incidence Rates upon the Behaviour of SIRS Epidemiological Models. Journal of Mathematical Biology, 1986, 23(2):187-204
[8] Yuan Z, Wang L. Global Stability of Epidemiological Models with Group Mixing and Nonlinear Incidence Rates. Nonlinear Analysis:Real World Applications, 2010, 11(2):995-1004
[9] Hu Z, Ma W, Ruan S. Analysis of SIR Epidemic Models with Nonlinear Incidence Rate and Treatment. Mathematical Biosciences, 2012, 238(1):12-20
[10] Song H, Wang J, Jiang W. Global dynamics in a multi-group epidemic model for disease with latency spreading and nonlinear transmission rate. Journal of Applied Analysis and Computation, 2016, 6:47-64
[11] Song H, Jiang W, Liu S. Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays. International Journal of Biomathematics, 2016, 9(03):1650046
[12] Miller R. Nonlinear Volterra Integral Equations. New York:W.A. Benjamin, 1971
[13] Liu X, Zhao X Q. A Periodic Epidemic Model with Age Structure in a Patchy Environment. SIAM Journal on Applied Mathematics, 2011, 71(6):1896-1917
[14] Hale J, Kato J. Phase Space for Retarded Equation with Infinite Delay. Funkcialaj Ekvacioj, 1978, 21(1):11-41
[15] Hale J, Verduyn Lunel S M. Introduction to Functional Differential Equations. New York:Springer-Verlag, 1993
[16] Kuang Y. Delay Differential Equations with Applications in Population Dynamics. San Diego:Academic Press, 1993
[17] Hino Y, Murakami S, Naito T. Functional Differential Equations with Infinite Delay. Berlin:Springer-Verlag, 1991
[18] Diekmann O, Heesterbeek J, Metz J. On the Definition and the Computation of the Basic Reproduction Ratio Re0 in Models for Infectious Diseases in Heterogeneous Populations. Journal of Mathematical Biology, 1990, 28(4):365-382
[19] Li M, Shu H. Impact of intracellular delays and target-cell dynamics on in vivo viral infections. SIAM J. Appl. Math., 2010, 70:2434-2448
[20] Liu S, Wang L. Global Stability of an HIV-1 Model with Distributed Intracellular Delays and a Combination Therapy. Math. Biosci. and Eng., 2010, 7:677-687
[21] Liu S, Wang S, Wang L. Global dynamics of delay epidemic models with nonlinear incidence rate and relapse. Nonl. Anal. RWA, 2011, 12:119-127
[22] McCluskey C. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Math. Biosci. and Eng., 2009, 6:603-610
[23] McCluskey C. Complete global stability for an SIR epidemic model with delay-Distributed or discrete. Nonl. Anal. RWA, 2010, 11:55-59
[24] Huang G, Takeuchi Y, Ma W, Wei D. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Bull. Math. Biol., 2010, 72:1192-1207
[25] Song H, Liu S, Jiang W. Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate. Mathematical Methods in the Applied Sciences, DOI:10.1002/mma.4130, Online, 2016
[26] Hale J, Waltman P. Persistence in Infinite-dimensional Systems. SIAM Journal on Mathematical Analysis, 1989, 20(2):388-395
[27] Zhao X Q. Dynamical Systems in Population Biology. New York:Springer-Verlag, 2003
[28] R"ost G, Wu J. SEIR Epidemiological Model with Varying Infectivity and Infinite Delay. Mathematical Biosciences and Engineering, 2008, 5(2):389-402
[29] Burton T, Hutson V. Repellers in Systems with Infinite Delay. Journal of Mathematical Analysis and Applications, 1989, 137(1):240-263

[1]赵才地, 阳玲, 刘国威, 许正雄. 一类时滞非牛顿流方程组在二维无界区域上的整体适定性与拉回吸引子[J]. 应用数学学报, 2017, 40(2): 287-311.
[2]严勇. 一类含有最大值项的二元时滞积分不等式的推广[J]. 应用数学学报, 2017, 40(1): 85-98.
[3]谢溪庄. 具有季节交替Lotka-Volterra合作模型的全局稳定性[J]. 应用数学学报, 2016, 39(5): 701-708.
[4]王琳. 具有多项式增长系数的随机延迟微分方程的整体解与矩估计[J]. 应用数学学报, 2016, 39(5): 765-785.
[5]田德生. 一类二阶时滞微分方程多个周期解的存在性[J]. 应用数学学报, 2016, 39(4): 537-546.
[6]廖华英, 徐向阳, 胡启宙. 对"一类带收获率的离散时滞人口模型正周期解存在性"的探究[J]. 应用数学学报, 2016, 39(4): 598-609.
[7]杨甲山. 时间测度链上一类二阶Emden-Fowler型动态方程的振荡性[J]. 应用数学学报, 2016, 39(3): 334-350.
[8]谢溪庄, 陈梅香. 具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性[J]. 应用数学学报, 2016, 39(2): 213-222.
[9]罗李平, 罗振国, 杨柳. 具脉冲扰动和时滞效应的拟线性抛物系统的(强)振动分析[J]. 应用数学学报, 2016, 39(1): 21-30.
[10]党艳霞, 蔡礼明, 李学志. 一类具有离散时滞的多菌株媒介传染病模型的竞争排斥[J]. 应用数学学报, 2016, 39(1): 100-120.
[11]冯伟贞, 李少娥. 时滞切换系统的稳定性[J]. 应用数学学报, 2015, 38(4): 673-698.
[12]杨俊元, 王晓燕, 李学志. 具有非线性发生率和扩散的两菌株模型分析[J]. 应用数学学报, 2015, 38(3): 413-422.
[13]刘有军, 张建文, 燕居让. 带分布时滞高阶中立型微分方程非振动解的存在性[J]. 应用数学学报, 2015, 38(2): 235-243.
[14]罗李平, 曾云辉, 罗振国. 具脉冲和时滞效应的拟线性双曲系统的振动性定理[J]. 应用数学学报(英文版), 2014, 37(5): 824-834.
[15]高焱. 九模类Lorenz系统的动力学行为及其数值模拟[J]. 应用数学学报(英文版), 2014, 37(3): 507-515.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14256
相关话题/应用数学 系统 疾病 统计 学报