摘要在大型队列研究中,病例-队列设计是一种可以有效节约成本的试验设计方法.本文研究了在病例-队列设计下,基于长度偏差数据的比例均值剩余寿命模型的统计推断问题,提出了一种带有时间相依权重的加权混合估计方程方法来估计模型中的回归系数,并证明了在适当条件下,所得到的估计量具有相合性与渐近正态性.模拟结果表明本文所提出的方法在有限样本下的表现不错.最后,我们将所提出的方法应用到了一组实际数据中. |
[1] | Zelen M, Feinleib M. On the theory of screening for chronic diseases. Biometrika, 1969, 56(3):601-614 | [2] | Lancaster T. The Econometric Analysis of Transition Data. Cambridge University Press, 1990, 59(236):483 | [3] | Vardi Y. Multiplicative censoring, renewal processes, deconvolution and decreasing density:Nonparametric estimation. Biometrika, 1989, 76(4):751-761 | [4] | Nowell C, Stanley L R. Length-biased sampling in mall intercept surveys. Journal of Marketing Research, 1991, 28(4):475-479 | [5] | Zelen M. Forward and Backward Recurrence Times and Length Biased Sampling:Age Specific Models. Lifetime Data Analysis, 2004, 10(4):325-334 | [6] | Asgharian M, Wolfson D B. Length-Biased Sampling with Right Censoring:an Unconditional Approach. Journal of the American Statistical Association, 2002, 97(457):201-209 | [7] | Qin J, Shen Y. Statistical Methods for Analyzing Right-censored Length-biased Data under Cox Model. Biometrics, 2010, 66(2):382 | [8] | Tsai, W.Y. Pseudo-partial likelihood for proportional hazards models with biased-sampling data. Biometrika, 2009, 96(3):601 | [9] | Shen Y, Ning J, Qin J. Analyzing Length-biased Data with Semiparametric Transformation and Accelerated Failure Time Models. Journal of the American Statistical Association, 2009, 104(487):1192-1202 | [10] | Ning Jing, Qin Jing, Shen Yu. Buckley-James-Type Estimator with Right-Censored and Length-Biased Data. Biometrics, 2015, 67(4):1369-1378 | [11] | Huang C Y, Qin J. Composite Partial Likelihood Estimation Under Length-Biased Sampling, with Application to a Prevalent Cohort Study of Dementia. Journal of the American Statistical Association, 2012, 107(499):946-957 | [12] | Ma H, Zhang F, Zhou Y. Composite estimating equation approach for additive risk model with length-biased and right-censored data. Statistics and Probability Letters, 2015, 96(96):45-53 | [13] | Oakes, D, Dasu, T. A note on residual life. Biometrika, 1990, 77(2):409-410 | [14] | Chen Y Q, Cheng S. Semiparametric Regression Analysis of Mean Residual Life with Censored Survival Data. Biometrika, 2005, 92(1):19-29 | [15] | Chen, Y Q. Additive Expectancy Regression. Journal of the American Statistical Association, 2007, 102(477):153-166 | [16] | Sun L, Zhang Z. A Class of Transformed Mean Residual Life Models With Censored Survival Data. Journal of the American Statistical Association, 2009, 104(486):803 | [17] | Chan K C G, Chen Y Q, Di C Z. Proportional mean residual life model for right-censored length-biased data. Biometrika, 2012, 99(4):995-1000 | [18] | Bai F, Huang J, Zhou Y. Semiparametric inference for the proportional mean residual life model with right-censored length-biased data. Statistica Sinica, 2016, 26(3):1129-1158 | [19] | Prentice R L. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 1986, 73(1):1-11 | [20] | Self S G, Prentice R L. Asymptotic Distribution Theory and Efficiency Results for Case-Cohort Studies. Annals of Statistics, 1988, 16(1):64-81 | [21] | Chen K, Lo S H. Case-Cohort and Case-Control Analysis with Cox's Model. Biometrika, 1999, 86(4):755-764 | [22] | Chen K. Generalized case-cohort sampling. Journal of the Royal Statistical Society, 2001, 63(4):791-809 | [23] | Kulich M, Lin D Y. Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies. Journal of the American Statistical Association, 2004, 99(467):832-844 | [24] | Kulich, M, Lin, D Y. Additive hazards regression for case-cohort studies. Biometrika, 2000, 87(1):73-87 | [25] | Chen H Y. Fitting Semiparametric Transformation Regression Models to Data from a Modified Case-Cohort Design. Biometrika, 2001, 88(1):255-268 | [26] | Kong L, Cai J, Sen P K, Kong, J W. Weighted estimating equations for semiparametric transformation models with censored data from a case-cohort design. Biometrika, 2004, 91(2):305-319 | [27] | Lu W, Tsiatis A A. Semiparametric transformation models for the case-cohort study. Biometrika, 2006, 93(1):207-214 | [28] | Ma H, Qiu Z, Zhou Y. Semiparametric transformation models with length-biased and right-censored data under the case-cohort design. Statistics and Its Interface, 2015, 9(2):213-222 | [29] | Ma H, Zhou Y. Pseudo-likelihood for case-cohort studies under length-biased sampling. Communications in Statistics, 2016, 46(1):28-48 | [30] | Murphy S A, Der Vaart A W V. On Profile Likelihood. Journal of the American Statistical Association, 2000, 95(450):449-465 | [31] | Wolkewitz M, Allignol A, Schumacher M, et al. Two Pitfalls in Survival Analyses of Time-dependent Exposure:a Case Study in a Cohort of Oscar Nominees. American Statistician, 2010, 64(3):205-211 | [32] | Lin C, Zhou Y. Analyzing right-censored and length-biased data with varying-coefficient transformation model. Journal of Multivariate Analysis, 2014, 130(3):45-63 | [33] | Redelmeier D A, Singh S M. Survival in Academy Award-winning actors and actresses. Annals of Internal Medicine, 2001, 134(10):955-962 | [34] | Sylvestre M P, Huszti E, Hanley J A. Do OSCAR winners live longer than less successful peers? A reanalysis of the evidence. Annals of Internal Medicine, 2006, 145(5):361-363 | [35] | Han, X, Small D S, Foster D P, Patel, V. The effect of winning an oscar award on survival:Correcting for healthy performer survivor bias with a rank preserving structural accelerated failure time model. The Annals of Applied Statistics, 2006, 5:746-772 | [36] | Addona V, Wolfson D B. A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up. Lifetime Data Analysis, 2006, 12(3):267-284 | [37] | Borgan O, Langholz B, Samuelsen S O, et al. Exposure stratified case-cohort designs. Lifetime Data Analysis, 2000, 6(1):39-58 | [38] | Kosorok M R. Introduction to empirical processes and semiparametric inference. Springer New York, 2008 | [39] | Andersen P K, Ornulf Borgan, Gill R D, et al. Statistical Models Based on Counting Processes. New York:Springer, 1993 | [40] | Pollard D. Empirical Processes:Theory and Applications. Hayward:Institute of Mathematical Statistics, 1990 | [41] | Rudin W. Principles of mathematical analysis. McGraw-Hill, 1976 |
[1] | 金应华, 吴耀华, 邵全喜. 对数线性模型下基于φ-散度的单边检验[J]. 应用数学学报, 2018, 41(4): 497-510. | [2] | 冯牧, 王萌, 龚朝庭. GARCH模型两步厚尾估计的诊断检验[J]. 应用数学学报, 2018, 41(1): 55-70. | [3] | 夏志明, 赵文芝. 带未知多个变点的均值突变模型的多阶段估计[J]. 应用数学学报, 2017, 40(6): 931-952. | [4] | 韩雪, 程维虎. 基于矩和L矩的三参数I型广义Logistic分布的参数估计[J]. 应用数学学报, 2017, 40(3): 331-344. | [5] | 戴晓文, 晏振, 田茂再. 带固定效应面板数据空间误差模型的分位回归估计[J]. 应用数学学报, 2016, 39(6): 847-858. | [6] | 黄金超, 凌能祥. 一类改进的Cox模型参数的经验Bayes检验[J]. 应用数学学报, 2016, 39(4): 562-573. | [7] | 张兴发, 李元. 一类oneGARCH-M模型的拟极大[J]. 应用数学学报, 2016, 39(3): 321-333. | [8] | 徐登可, 张忠占. 二项-泊松模型的变量选择[J]. 应用数学学报, 2015, 38(4): 708-720. | [9] | 黄意球, 徐, 王艳. 简单ACD模型的M估计[J]. 应用数学学报(英文版), 2014, 37(5): 926-945. | [10] | 陈敏, 韦来生. 线性模型中回归系数的可估函数和误差方差同时的Bayes估计及优良性[J]. 应用数学学报(英文版), 2014, 37(5): 865-877. | [11] | 彭家龙, 赵彦晖, 袁莹. 舍入数据下Cox模型参数的经验Bayes检验问题[J]. 应用数学学报(英文版), 2014, 37(2): 321-331. | [12] | 彭家龙, 赵彦晖, 袁莹. 舍入数据下Cox模型参数的经验Bayes检验问题[J]. 应用数学学报(英文版), 0, (): 321-331. | [13] | 万树文. 一种半参数ROC曲面估计方法[J]. 应用数学学报(英文版), 2013, 36(4): 698-708. | [14] | 刘金山, 夏强, 黄香. 广义矩阵分布下多元回归模型的贝叶斯推断[J]. 应用数学学报(英文版), 2013, 36(3): 385-398. | [15] | 李泽华, 刘金山, 吴小腊. 有重复观测的变系数EV模型的参数估计[J]. 应用数学学报(英文版), 2013, 36(2): 217-229. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14642
失效原因缺失的加速失效时间模型下竞争风险数据的半参数估计何其祥1,2,林仁鑫31.上海财经大学数学学院,上海200433;2.上海财经大学浙江学院,金华321013;3.中国诺华生物医药研究院有限公司生物统计部,上海201203SemiparametricAnalysisforCompetingRi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于右删失宽相依数据的Kaplan-Meier估计和风险率估计的渐近性质李永明1,2,周勇31上海财经大学统计与管理学院,上海200433;2上饶师范学院数学与计算机科学学院,上饶334001;3华东师范大学经济与管理学部,上海200062AsymptoticPropertiesoftheKapla ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27均匀的三水平扩展设计雷轶菊1,欧祖军2,李洪毅21.新乡学院数学与信息科学学院,新乡453003;2.吉首大学数学与统计学院,吉首416000UniformThree-levelExtendedDesignsLEIYiju1,OUZujun2,LIHongyi21.CollegeofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Case-cohort设计下多类型事件数据的一类有效估计刘君娥1,周洁21.淮北师范大学管理学院,淮北235000;2.首都师范大学数学科学学院,北京100048AnEffectiveEstimatingforCase-cohortDesignswithMultipleTypeEventDataLI ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27SEVIS方法的局部线性估计及其在超高维数据下的应用连亦旻1,陈钊2,舒明良31.中国科学技术大学统计与金融系,合肥230026;2.DepartmentofStatistics,PennsylvaniaStateUniversity,StateCollege,USA,PA16802;3.中国科学院 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27GARCH模型两步厚尾估计的诊断检验冯牧1,王萌2,龚朝庭31.中国科学技术大学统计与金融系,合肥230026;2.博时基金管理有限公司,深圳518000;3.中国科学院数学与系统科学研究院,北京100190DiagnosticTestfortheTwo-stepEstimatorsofHeavy- ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27混料试验的拟分量变换设计李光辉,张崇岐广州大学经济与统计学院,广州510006ThePseudoComponentTransformationforMixtureExperimentsDesignLIGuanghui,ZHANGChongqiGuangzhouUniversity,SchoolofE ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带信息终止事件的复发事件数据的联合建模分析曹学锋1,曲连强21.黄冈师范学院数学系,黄冈438000;2.华中师范大学数学与统计学学院,武汉430079JointModelingAnalysisofRecurrentEventDatawithInformationTerminalEventCAOXu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带固定效应面板数据空间误差模型的分位回归估计戴晓文1,晏振2,田茂再1,3,41.中国人民大学应用统计科学研究中心,中国人民大学统计学院,北京100872;2.广西师范大学数学与统计学院,桂林541004;3.兰州财经大学统计学院,兰州730020;4.新疆财经大学统计与信息学院,乌鲁木齐83000 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多类型复发事件数据下一类Box-Cox转移模型郦博文1,张海祥21.中国科学技术大学统计与金融系,合肥230026;2.中国科学院数学与系统科学研究院,北京100190AClassofBox-CoxTransformationModelsforMultipleTypeRecurrentEventDa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|