删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断

本站小编 Free考研考试/2021-12-27

病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断 徐达1, 周勇2,31. 上海财经大学统计与管理学院, 上海 200082;
2. 华东师范大学经管学部交叉科学研究院及统计学院, 上海 200241;
3. 中国科学院数学与系统科学研究院, 北京 100190 Proportional Mean Residual Life Model for Length-biased Data Under the Case-cohort Design XU Da1, ZHOU Yong2,31. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China;
2. Institute of Statistics and Interdisciplinary Sciences and School of Staistics, Faculty of Economics and Management, East China Normal University, Shanghai 200241, China;
3. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(483 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在大型队列研究中,病例-队列设计是一种可以有效节约成本的试验设计方法.本文研究了在病例-队列设计下,基于长度偏差数据的比例均值剩余寿命模型的统计推断问题,提出了一种带有时间相依权重的加权混合估计方程方法来估计模型中的回归系数,并证明了在适当条件下,所得到的估计量具有相合性与渐近正态性.模拟结果表明本文所提出的方法在有限样本下的表现不错.最后,我们将所提出的方法应用到了一组实际数据中.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-10-16
PACS:O212.1
基金资助:国家自然科学基金委重点项目(71331006),国家自然科学重大研究计划重点项目(91546202)资助.

引用本文:
徐达, 周勇. 病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断[J]. 应用数学学报, 2019, 42(3): 318-333. XU Da, ZHOU Yong. Proportional Mean Residual Life Model for Length-biased Data Under the Case-cohort Design. Acta Mathematicae Applicatae Sinica, 2019, 42(3): 318-333.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I3/318


[1] Zelen M, Feinleib M. On the theory of screening for chronic diseases. Biometrika, 1969, 56(3):601-614
[2] Lancaster T. The Econometric Analysis of Transition Data. Cambridge University Press, 1990, 59(236):483
[3] Vardi Y. Multiplicative censoring, renewal processes, deconvolution and decreasing density:Nonparametric estimation. Biometrika, 1989, 76(4):751-761
[4] Nowell C, Stanley L R. Length-biased sampling in mall intercept surveys. Journal of Marketing Research, 1991, 28(4):475-479
[5] Zelen M. Forward and Backward Recurrence Times and Length Biased Sampling:Age Specific Models. Lifetime Data Analysis, 2004, 10(4):325-334
[6] Asgharian M, Wolfson D B. Length-Biased Sampling with Right Censoring:an Unconditional Approach. Journal of the American Statistical Association, 2002, 97(457):201-209
[7] Qin J, Shen Y. Statistical Methods for Analyzing Right-censored Length-biased Data under Cox Model. Biometrics, 2010, 66(2):382
[8] Tsai, W.Y. Pseudo-partial likelihood for proportional hazards models with biased-sampling data. Biometrika, 2009, 96(3):601
[9] Shen Y, Ning J, Qin J. Analyzing Length-biased Data with Semiparametric Transformation and Accelerated Failure Time Models. Journal of the American Statistical Association, 2009, 104(487):1192-1202
[10] Ning Jing, Qin Jing, Shen Yu. Buckley-James-Type Estimator with Right-Censored and Length-Biased Data. Biometrics, 2015, 67(4):1369-1378
[11] Huang C Y, Qin J. Composite Partial Likelihood Estimation Under Length-Biased Sampling, with Application to a Prevalent Cohort Study of Dementia. Journal of the American Statistical Association, 2012, 107(499):946-957
[12] Ma H, Zhang F, Zhou Y. Composite estimating equation approach for additive risk model with length-biased and right-censored data. Statistics and Probability Letters, 2015, 96(96):45-53
[13] Oakes, D, Dasu, T. A note on residual life. Biometrika, 1990, 77(2):409-410
[14] Chen Y Q, Cheng S. Semiparametric Regression Analysis of Mean Residual Life with Censored Survival Data. Biometrika, 2005, 92(1):19-29
[15] Chen, Y Q. Additive Expectancy Regression. Journal of the American Statistical Association, 2007, 102(477):153-166
[16] Sun L, Zhang Z. A Class of Transformed Mean Residual Life Models With Censored Survival Data. Journal of the American Statistical Association, 2009, 104(486):803
[17] Chan K C G, Chen Y Q, Di C Z. Proportional mean residual life model for right-censored length-biased data. Biometrika, 2012, 99(4):995-1000
[18] Bai F, Huang J, Zhou Y. Semiparametric inference for the proportional mean residual life model with right-censored length-biased data. Statistica Sinica, 2016, 26(3):1129-1158
[19] Prentice R L. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 1986, 73(1):1-11
[20] Self S G, Prentice R L. Asymptotic Distribution Theory and Efficiency Results for Case-Cohort Studies. Annals of Statistics, 1988, 16(1):64-81
[21] Chen K, Lo S H. Case-Cohort and Case-Control Analysis with Cox's Model. Biometrika, 1999, 86(4):755-764
[22] Chen K. Generalized case-cohort sampling. Journal of the Royal Statistical Society, 2001, 63(4):791-809
[23] Kulich M, Lin D Y. Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies. Journal of the American Statistical Association, 2004, 99(467):832-844
[24] Kulich, M, Lin, D Y. Additive hazards regression for case-cohort studies. Biometrika, 2000, 87(1):73-87
[25] Chen H Y. Fitting Semiparametric Transformation Regression Models to Data from a Modified Case-Cohort Design. Biometrika, 2001, 88(1):255-268
[26] Kong L, Cai J, Sen P K, Kong, J W. Weighted estimating equations for semiparametric transformation models with censored data from a case-cohort design. Biometrika, 2004, 91(2):305-319
[27] Lu W, Tsiatis A A. Semiparametric transformation models for the case-cohort study. Biometrika, 2006, 93(1):207-214
[28] Ma H, Qiu Z, Zhou Y. Semiparametric transformation models with length-biased and right-censored data under the case-cohort design. Statistics and Its Interface, 2015, 9(2):213-222
[29] Ma H, Zhou Y. Pseudo-likelihood for case-cohort studies under length-biased sampling. Communications in Statistics, 2016, 46(1):28-48
[30] Murphy S A, Der Vaart A W V. On Profile Likelihood. Journal of the American Statistical Association, 2000, 95(450):449-465
[31] Wolkewitz M, Allignol A, Schumacher M, et al. Two Pitfalls in Survival Analyses of Time-dependent Exposure:a Case Study in a Cohort of Oscar Nominees. American Statistician, 2010, 64(3):205-211
[32] Lin C, Zhou Y. Analyzing right-censored and length-biased data with varying-coefficient transformation model. Journal of Multivariate Analysis, 2014, 130(3):45-63
[33] Redelmeier D A, Singh S M. Survival in Academy Award-winning actors and actresses. Annals of Internal Medicine, 2001, 134(10):955-962
[34] Sylvestre M P, Huszti E, Hanley J A. Do OSCAR winners live longer than less successful peers? A reanalysis of the evidence. Annals of Internal Medicine, 2006, 145(5):361-363
[35] Han, X, Small D S, Foster D P, Patel, V. The effect of winning an oscar award on survival:Correcting for healthy performer survivor bias with a rank preserving structural accelerated failure time model. The Annals of Applied Statistics, 2006, 5:746-772
[36] Addona V, Wolfson D B. A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up. Lifetime Data Analysis, 2006, 12(3):267-284
[37] Borgan O, Langholz B, Samuelsen S O, et al. Exposure stratified case-cohort designs. Lifetime Data Analysis, 2000, 6(1):39-58
[38] Kosorok M R. Introduction to empirical processes and semiparametric inference. Springer New York, 2008
[39] Andersen P K, Ornulf Borgan, Gill R D, et al. Statistical Models Based on Counting Processes. New York:Springer, 1993
[40] Pollard D. Empirical Processes:Theory and Applications. Hayward:Institute of Mathematical Statistics, 1990
[41] Rudin W. Principles of mathematical analysis. McGraw-Hill, 1976

[1]金应华, 吴耀华, 邵全喜. 对数线性模型下基于φ-散度的单边检验[J]. 应用数学学报, 2018, 41(4): 497-510.
[2]冯牧, 王萌, 龚朝庭. GARCH模型两步厚尾估计的诊断检验[J]. 应用数学学报, 2018, 41(1): 55-70.
[3]夏志明, 赵文芝. 带未知多个变点的均值突变模型的多阶段估计[J]. 应用数学学报, 2017, 40(6): 931-952.
[4]韩雪, 程维虎. 基于矩和L矩的三参数I型广义Logistic分布的参数估计[J]. 应用数学学报, 2017, 40(3): 331-344.
[5]戴晓文, 晏振, 田茂再. 带固定效应面板数据空间误差模型的分位回归估计[J]. 应用数学学报, 2016, 39(6): 847-858.
[6]黄金超, 凌能祥. 一类改进的Cox模型参数的经验Bayes检验[J]. 应用数学学报, 2016, 39(4): 562-573.
[7]张兴发, 李元. 一类oneGARCH-M模型的拟极大[J]. 应用数学学报, 2016, 39(3): 321-333.
[8]徐登可, 张忠占. 二项-泊松模型的变量选择[J]. 应用数学学报, 2015, 38(4): 708-720.
[9]黄意球, 徐, 王艳. 简单ACD模型的M估计[J]. 应用数学学报(英文版), 2014, 37(5): 926-945.
[10]陈敏, 韦来生. 线性模型中回归系数的可估函数和误差方差同时的Bayes估计及优良性[J]. 应用数学学报(英文版), 2014, 37(5): 865-877.
[11]彭家龙, 赵彦晖, 袁莹. 舍入数据下Cox模型参数的经验Bayes检验问题[J]. 应用数学学报(英文版), 2014, 37(2): 321-331.
[12]彭家龙, 赵彦晖, 袁莹. 舍入数据下Cox模型参数的经验Bayes检验问题[J]. 应用数学学报(英文版), 0, (): 321-331.
[13]万树文. 一种半参数ROC曲面估计方法[J]. 应用数学学报(英文版), 2013, 36(4): 698-708.
[14]刘金山, 夏强, 黄香. 广义矩阵分布下多元回归模型的贝叶斯推断[J]. 应用数学学报(英文版), 2013, 36(3): 385-398.
[15]李泽华, 刘金山, 吴小腊. 有重复观测的变系数EV模型的参数估计[J]. 应用数学学报(英文版), 2013, 36(2): 217-229.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14642
相关话题/应用数学 数据 统计 设计 检验