删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类核反应堆数学模型正解的全局分歧

本站小编 Free考研考试/2021-12-27

一类核反应堆数学模型正解的全局分歧 陈瑞鹏, 李小亚北方民族大学数学与信息科学学院, 银川 750021 Global Bifurcation of Positive Solutions of a Mathematical Model Arising In Nuclear Engineering CHEN Ruipeng, LI XiaoyaCollege of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(373 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究一类源于核反应堆的数学模型正解的存在性.该模型旨在描述与快中子流密度、反应堆温度紧密相关的核反应过程.本文主要讨论反应堆与外界有热交换的情形.从数学的角度来看,模型自身的非合作特性导致对正解存在性及相关性质的研究较为困难,适用于研究合作系统的比较原理等方法将不再有效.运用分歧理论,我们获得了该模型存在正解的充分必要条件,建立了正解的全局分歧结果,同时对正解的渐近行为进行了仔细分析.所得结果丰富并补充了核反应堆数学模型的相关理论.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-07-12
PACS:O175.8
基金资助:国家自然科学基金(61761002,11601011),北方民族大学校级科研一般项目(2018XYZSX03)和北方民族大学重大专项项目经费(ZDZX201804)资助项目.

引用本文:
陈瑞鹏, 李小亚. 一类核反应堆数学模型正解的全局分歧[J]. 应用数学学报, 2018, 41(5): 596-608. CHEN Ruipeng, LI Xiaoya. Global Bifurcation of Positive Solutions of a Mathematical Model Arising In Nuclear Engineering. Acta Mathematicae Applicatae Sinica, 2018, 41(5): 596-608.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I5/596


[1] Kastenberg W E, Chambré P L. On the stability of nonlinear space-dependent reactor kinetics. Nucl. Sci. Engrg., 1968, 31:67-79
[2] Pao C V. Bifurcation analysis on a nonlinear diffusion system in reactor dynamics. Appl. Anal., 1979, 9:107-119
[3] Wang M X. Global solution, asymptotic behavior and blow-up problems for a model of nuclear reactors. Science in China (Series A), 1991, 5:466-477 (in Chinese)
[4] Gu Y G, Wang M X. Existence of positive stationary solutions and threshold results for a reaction-diffusion system. J. Differential Equations, 1996, 130:277-291
[5] Arioli G. Long term dynamics of a reaction-diffusion system. J. Differential Equations, 2007, 235:298-307
[6] López-Gómez J. The steady states of a non-cooperative model of nuclear reactors. J. Differential Equations, 2009, 246:358-372
[7] Antón I, López-Gómez J. Steady states of a non-cooperative model arising in nuclear engineering. Nonlinear Anal. RWA, 2013, 14:1340-1360
[8] Peng R, Wei D, Yang G Y. Asymptotic behavior, uniqueness and stability of coexistence states of a non-cooperative reaction diffusion model of nuclear reactors. Proc. Roy. Soc. Edinburgh, 2010, 140 A:189-201
[9] Zhou W S. Uniqueness and asymptotic behavior of coexistence states for a non-cooperative model of nuclear reactors. Nonlinear Anal., 2010, 72:2816-2820
[10] Li Y H, Li F Y. Nontrivial solutions to a class of systems of second-order differential equations. J. Math. Anal. Appl., 2012, 388:410-419
[11] Zhou J, Shi J P. Uniqueness of the positive solution for a non-cooperative model of nuclear reactors. Appl. Math. Lett., 2013, 26:1005-1007
[12] Bie Q Y. Global stability of the positive equilibrium for a non-cooperative model of nuclear reactors. Electron. J. Qual. Theo. Diff. Eqs., 2012, 16:1-10
[13] Wang F L, An Y K. Positive solutions for a second-order differential system. J. Math. Anal. Appl., 2011, 373:370-375
[14] Wang F L, An Y K. On positive solutions for a second order differential system with indefinite weight. Appl. Math. Comput., 2015, 259:753-761
[15] Wang F L, Wang Y H. Existence of positive stationary solutions for a reaction-diffusion system. Boundary Value Problems, 2016, 2016(11):1-10
[16] Chen R P, Ma R Y. Positive solutions of the second-order differential systems in reactor dynamics. Appl. Math. Comput., 2012, 219:3882-3892
[17] Chen R P, Ma R Y. Global bifurcation of positive radial solutions for an elliptic system in reactor dynamics. Comput. Math. Appl., 2013, 65:1119-1128
[18] Chen R P, Li X Y. The steady states of a non-cooperative model arising in reactor dynamics. Comput. Math. Appl., 2016, 72:594-602
[19] Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J. Funct. Anal., 1971, 8:321-340
[20] López-Gómez J, Mora-Corral C. Algebraic Multiplicity of Eigenvalues of Linear Operators. Basel, Boston, Berlin:Birkhäuser/Springer, 2007
[21] López-Gómez J. Spectral Theory and Nonlinear Functional Analysis. Boca Raton, FL:Chapman& Hall/CRC, 2001
[22] Rabinowitz P H. Some global results for nonlinear eigenvalue problems. J. Funct. Anal., 1971, 7:487-513
[23] López-Gómez J, Molina-Meyer M. Bounded components of positive solutions of abstract fixed point equations:Mushrooms, loops and isolas. J. Differential Equations, 2005, 209:416-441
[24] Ma R Y, Chen R P, Wang H Y. Coexistence states of an elliptic system modeling a population with two age groups. Comput. Math. Appl., 2015, 69:1263-1271
[25] Ma R Y, Gao H L, Lu Y Q. Radial positive solutions of nonlinear elliptic systems with Neumann boundary conditions. J. Math. Anal. Appl., 2016, 434:1240-1252
[26] Ma R Y, Chen T L, Wang H Y. Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions. J. Math. Anal. Appl., 2016, 443:542-565
[27] Dai G W, Ma R Y. Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian. J. Differential Equations, 2012, 252:2448-2468
[28] Dai G W, Ma R Y. Global bifurcation, Berestycki's conjecture and one-sign solutions for p-Laplacian. Nonlinear Anal., 2013, 91:51-59
[29] Dai G W, Wang H Y, Yang B X. Global bifurcation and positive solution for a class of fully nonlinear problems. Comput. Math. Appl., 2015, 69:771-776
[30] Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I. Comm. Pure Appl. Math., 1959, 12:623-727
[31] Brézis H. Analyse Fontionnelle. Paris:Masson, 1983

[1]田元生, 李小平, 葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2018, 41(4): 529-539.
[2]李志广, 康淑瑰. 一类退化抛物变分不等式问题解的存在性和唯一性[J]. 应用数学学报, 2018, 41(3): 289-304.
[3]王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769.
[4]贾婷婷, 聂华, 张瑜. 一类具有外加毒素的非均匀恒化器模型分析[J]. 应用数学学报, 2017, 40(3): 377-399.
[5]张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239.
[6]胡良根, 张怀念. 奇异Sturm-Liouville特征值问题正解的全局分歧和存在性[J]. 应用数学学报, 2016, 39(5): 677-688.
[7]史册, 闻斌, 林静. 循环连续正交表[J]. 应用数学学报, 2016, 39(5): 786-800.
[8]田元生, 李小平. 一类带p-Laplacian算子分数阶微分方程边值问题的正解[J]. 应用数学学报, 2016, 39(4): 481-494.
[9]王金华, 向红军. 无穷分数差分方程三点边值问题[J]. 应用数学学报, 2015, 38(6): 1029-1039.
[10]王定畅, 仇秋生. 集值优化问题广义拟近似解的性质与存在性定理[J]. 应用数学学报, 2015, 38(5): 929-943.
[11]樊自安. 包含次临界和临界Sobolev指数的椭圆方程组解的存在性[J]. 应用数学学报, 2015, 38(5): 834-844.
[12]张立新. 一类含积分边界条件的分数阶微分方程的正解的存在性[J]. 应用数学学报, 2015, 38(3): 423-433.
[13]梁海华, 王根强. 一类带非负系数矩阵的非线性代数系统的正解的存在性[J]. 应用数学学报, 2015, 38(1): 137-149.
[14]王峰, 崔玉军. 二阶隐式微分方程周期边值问题的正解[J]. 应用数学学报(英文版), 2014, 37(5): 946-955.
[15]向建林, 张亮, 赵维锐. γ>2时欧拉-泊松方程组平衡解的存在唯一性[J]. 应用数学学报(英文版), 2014, 37(4): 601-608.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14536
相关话题/应用数学 分数 北方民族大学 系统 统计