摘要针对具有建模误差和外部干扰的不确定分数阶混沌系统的同步问题,本文通过将分数阶到达律引入滑模控制,提出了一个新型的分数阶滑模控制器.基于Lyapunov稳定理论和分数阶系统稳定理论,分析了被控系统的稳定性.分别以两个分数阶Lü混沌系统间的同结构同步和分数阶Lü与分数阶Liu混沌系统间的异结构同步为例进行了数值仿真,仿真结果表明了该控制器的有效性和鲁棒性. |
[1] | Koeller R C. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 1984, 51(2):299-307 | [2] | Sun H H, Abdelwahab A A, Onaral B. Linear approximation of transfer function with a pole of fractional power. IEEE Transactions on Automatic Control, 1984, 29(5):441-444 | [3] | Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode process. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 33(2):253-265 | [4] | Heaviside O. Electromagnetic Theory. Chelsea Publishing Company, New York, 1971 | [5] | Magin R L. Fractional calculus in bioengineering. Begell House Publishers, USA, 2006 | [6] | Chen Y Q, Petras I, Xue D Y. Fractional Order Control-A Tutorial. In:Proceedings of American Control Conference, St. Louis, USA, 2009, 1397-1411 | [7] | Li C P, Peng G J. Chaos in Chen's system with a fractional order. Chaos, Solitons and Fractals, 2004, 22(2):443-450 | [8] | Grigorenko I, Grigorenko E. Chaotic Dynamics of the Fractional Lorenz System. Physical Review Letters, 2003, 91(3):034101 | [9] | Ge Z M, Ou C Y. Chaos in a fractional order modified Duffing system. Chaos, Solitons and Fractals, 2007, 34(2):262-291 | [10] | Wang X Y, Wang M J. Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos, 2007, 17(3):033106 | [11] | Lu J G. Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letter A, 2006, 354(4):305-311 | [12] | Li C G, Chen G R. Chaos and hyperchaos in the fractional-order Rossler equations. Physica A, 2004, 341:55-61 | [13] | Wu C W, Chua L O. A simple way to synchronize chaotic systems with applications to secure communication systems. International Journal of Bifurcation and Chaos, 1993, 3(6):1619-1627 | [14] | Chee C Y, Xu D. Secure digital communication using controlled projective synchronization of chaos. Chaos, Solitons and Fractals, 2005, 23(3):1063-1070 | [15] | Li C G, Liao X F, Yu J B. Synchronization of fractional order chaotic systems. Phys. Rev. E, 2003, 68:067203 | [16] | Hosseinnia S H, Ghaderi R, Ranjbar N A. Mahmoudian M, Momani S. Sliding mode synchronization of an uncertain fractional order chaotic system. Computers and Mathematics with Applications, 2010, 59(5):1637-1643 | [17] | Zhou P, Ding R. Chaotic synchronization between different fractional-order chaotic systems. Journal of the Franklin Institute, 2011, 348(10):2839-2848 | [18] | Agrawal S K, Srivastava M, Das S. Synchronization of fractional order chaotic systems using active control method. Chaos, Solitons and Fractals, 2012, 45(6):737-752 | [19] | Kuntanapreeda S. Robust synchronization of fractional-order unified chaotic systems via linear control. Computers and Mathematics with Applications, 2012, 63(1):183-190 | [20] | Wu G C, Baleanu D. Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 2014, 75:283-287 | [21] | Wu G C, Baleanu D. Chaos synchronization of the discrete fractional logistic map. Signal Processing, 2014, 102:96-99 | [22] | Monje C A, Vinagre B M, Feliu V, Chen Y Q. Tuning and Auto-Tuning of Fractional Order Controllers for Industry Applications. Control Engineering Practice, 2008, 16(7):798-812 | [23] | Podlubny I. Fractional Differential Equations. Academic Press, New York, 1999 | [24] | Charef A, Sun H H, Tsao Y Y, Onaral B. Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, 1992, 37(9):1465-1470 | [25] | Ahmad W M, Sprott J C. Chaos in fractional-order autonomous nonlinear systems. Chaos, Solitons and Fractals, 2003, 16(2):339-351 | [26] | Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 2002, 29(1-4):3-22 | [27] | Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electronic Transactions on Numerical Analysis, 1997, 5:1-6 | [28] | Diethelm K, Ford N J, Freed A D. Detailed error analysis for a fractional Adams method. Numerical Algorithms, 2004, 36(1):31-52 | [29] | Diethelm K. The analysis of fractional differential equations. Springer Verlag, 2010 | [30] | Matignon D. Stability results on fractional differential equations with applications to control processing. In:Computation engineering in system and application multiconference. IMACS, IEEE-SMC Proceedings, Lille, France, 1996, 2:963-968 | [31] | Ahmed E, El-Sayed A M A, El-Saka H A A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl., 2007, 325(1):542-553 |
[1] | 田元生, 李小平, 葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2018, 41(4): 529-539. | [2] | 王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42. | [3] | 张文彪, 易鸣. 一类抽象非线性分数阶微分方程的Cauchy问题[J]. 应用数学学报, 2017, 40(6): 874-882. | [4] | 王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769. | [5] | 王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572. | [6] | 张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239. | [7] | 杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733. | [8] | 李耀红, 张海燕. 一类分数阶微分方程积分边值问题的可解性[J]. 应用数学学报, 2016, 39(4): 547-554. | [9] | 田元生, 李小平. 一类带p-Laplacian算子分数阶微分方程边值问题的正解[J]. 应用数学学报, 2016, 39(4): 481-494. | [10] | 张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480. | [11] | 张毅. 分数阶力学系统的正则变换理论[J]. 应用数学学报, 2016, 39(2): 249-260. | [12] | 韩祥临, 石兰芳, 许永红, 莫嘉琪. 分数阶双参数奇摄动非线性微分方程的渐近解[J]. 应用数学学报, 2015, 38(4): 721-729. | [13] | 郑敏玲. 空间分数阶扩散方程的谱及拟谱方法[J]. 应用数学学报, 2015, 38(3): 434-449. | [14] | 张立新. 一类含积分边界条件的分数阶微分方程的正解的存在性[J]. 应用数学学报, 2015, 38(3): 423-433. | [15] | 邓喜才, 向淑文. 不确定下广义博弈强Berge均衡的存在性[J]. 应用数学学报, 2015, 38(2): 201-211. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14550
年龄结构SIQR传染病模型及稳定性王改霞1,刘纪轩2,李学志31.信阳学院数学与信息学院,信阳464000;2.空军工程大学航空机务士官学校基础部,信阳464000;3.河南师范大学数学与信息科学学院,新乡453007StabilityofAge-structuredSIQREpidemiologi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统魏利1,张瑞兰1,RaviP.Agarwal2,31.河北经贸大学数学与统计学学院,石家庄050061;2.DepartmentofMathematics,TexasA&MUniversity-Kingsville,Kingsvi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间模上一类二阶非线性延迟动力系统的振动性分析杨甲山梧州学院信息与电子工程学院,梧州543002OscillationAnalysisofSecond-orderNonlinearDelayDynamicEquationsonTimeScalesYANGJiashanSchoolofInformat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有初态误差的高阶多智能体系统一致性跟踪李国军1,2,陈东杰2,韩一士21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053ConsensusTrackingofHigh-orderMulti-agentSystemswithInitialStateError ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析王虎1,田晶磊2,孙玉琴3,于永光11.中央财经大学统计与数学学院,北京100081;2.北京交通大学理学院,北京100044;3.内蒙古大学鄂尔多斯应用技术学院,内蒙古017000StabilityAnalysisofFractionalStag ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27温储备失效和单重休假Min(N,V)-策略的M/G/1可修排队系统蔡晓丽1,唐应辉1,21.四川师范大学数学与软件科学学院,成都610068;2.四川师范大学数学与软件科学学院,成都610068M/G/1RepairableQueueingSystemwithWarmStandbyFailurean ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Keller-Segel抛物系统解的爆破现象李远飞广东财经大学华商学院,广州511300Blow-upPhenomenafortheSolutionstoaFullyParabolicKeller-SegelSystemLIYuanfeiSchoolofMathematic,SouthChinaof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间四阶-时间分数阶扩散波方程的一个新的数值分析方法胡秀玲1,张鲁明21.江苏师范大学数学与统计学院,徐州221116;2.南京航空航天大学理学院,南京210016ANewNumericalMethodforFourth-orderFractionalDiffusion-waveSystemHUXi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性扰动广义NNV微分系统的孤子研究欧阳成1,陈贤峰2,莫嘉琪31.湖州师范学院理学院,湖州313000;2.上海交通大学数学系,上海200240;3.安徽师范大学数学系,芜湖241003StudyfortheSolitonofNonlinearDisturbedGeneralizedNNVDif ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类非线性分数阶微分方程多点积分边值问题解的存在性张福珍1,刘文斌2,王刚21.九州职业技术学院高等数学教研室,徐州221116;2.中国矿业大学数学学院,徐州221116ExistenceofSolutionsforNonlinearDifferentialEquationsofFractiona ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|