删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于分数阶滑模控制器的不确定分数阶混沌系统同步

本站小编 Free考研考试/2021-12-27

基于分数阶滑模控制器的不确定分数阶混沌系统同步 阎晓妹1, 尚婷1, 赵小国21. 西安理工大学自动化与信息工程学院, 西安 710048;
2. 西安建筑科技大学机电工程学院, 西安 710055 Synchronization of Uncertain Fractional-order Chaotic Systems Based on the Fractional-Order Sliding Mode Controller YAN Xiaomei1, SHANG Ting1, ZHAO Xiaoguo21. Faculty of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
2. School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(952 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要针对具有建模误差和外部干扰的不确定分数阶混沌系统的同步问题,本文通过将分数阶到达律引入滑模控制,提出了一个新型的分数阶滑模控制器.基于Lyapunov稳定理论和分数阶系统稳定理论,分析了被控系统的稳定性.分别以两个分数阶Lü混沌系统间的同结构同步和分数阶Lü与分数阶Liu混沌系统间的异结构同步为例进行了数值仿真,仿真结果表明了该控制器的有效性和鲁棒性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2013-08-21
PACS:TP18
基金资助:国家自然科学基金(61575158),陕西省教育厅科技研究计划专项(17JK0456)资助项目.

引用本文:
阎晓妹, 尚婷, 赵小国. 基于分数阶滑模控制器的不确定分数阶混沌系统同步[J]. 应用数学学报, 2018, 41(6): 765-776. YAN Xiaomei, SHANG Ting, ZHAO Xiaoguo. Synchronization of Uncertain Fractional-order Chaotic Systems Based on the Fractional-Order Sliding Mode Controller. Acta Mathematicae Applicatae Sinica, 2018, 41(6): 765-776.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I6/765


[1] Koeller R C. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 1984, 51(2):299-307
[2] Sun H H, Abdelwahab A A, Onaral B. Linear approximation of transfer function with a pole of fractional power. IEEE Transactions on Automatic Control, 1984, 29(5):441-444
[3] Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode process. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 33(2):253-265
[4] Heaviside O. Electromagnetic Theory. Chelsea Publishing Company, New York, 1971
[5] Magin R L. Fractional calculus in bioengineering. Begell House Publishers, USA, 2006
[6] Chen Y Q, Petras I, Xue D Y. Fractional Order Control-A Tutorial. In:Proceedings of American Control Conference, St. Louis, USA, 2009, 1397-1411
[7] Li C P, Peng G J. Chaos in Chen's system with a fractional order. Chaos, Solitons and Fractals, 2004, 22(2):443-450
[8] Grigorenko I, Grigorenko E. Chaotic Dynamics of the Fractional Lorenz System. Physical Review Letters, 2003, 91(3):034101
[9] Ge Z M, Ou C Y. Chaos in a fractional order modified Duffing system. Chaos, Solitons and Fractals, 2007, 34(2):262-291
[10] Wang X Y, Wang M J. Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos, 2007, 17(3):033106
[11] Lu J G. Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letter A, 2006, 354(4):305-311
[12] Li C G, Chen G R. Chaos and hyperchaos in the fractional-order Rossler equations. Physica A, 2004, 341:55-61
[13] Wu C W, Chua L O. A simple way to synchronize chaotic systems with applications to secure communication systems. International Journal of Bifurcation and Chaos, 1993, 3(6):1619-1627
[14] Chee C Y, Xu D. Secure digital communication using controlled projective synchronization of chaos. Chaos, Solitons and Fractals, 2005, 23(3):1063-1070
[15] Li C G, Liao X F, Yu J B. Synchronization of fractional order chaotic systems. Phys. Rev. E, 2003, 68:067203
[16] Hosseinnia S H, Ghaderi R, Ranjbar N A. Mahmoudian M, Momani S. Sliding mode synchronization of an uncertain fractional order chaotic system. Computers and Mathematics with Applications, 2010, 59(5):1637-1643
[17] Zhou P, Ding R. Chaotic synchronization between different fractional-order chaotic systems. Journal of the Franklin Institute, 2011, 348(10):2839-2848
[18] Agrawal S K, Srivastava M, Das S. Synchronization of fractional order chaotic systems using active control method. Chaos, Solitons and Fractals, 2012, 45(6):737-752
[19] Kuntanapreeda S. Robust synchronization of fractional-order unified chaotic systems via linear control. Computers and Mathematics with Applications, 2012, 63(1):183-190
[20] Wu G C, Baleanu D. Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 2014, 75:283-287
[21] Wu G C, Baleanu D. Chaos synchronization of the discrete fractional logistic map. Signal Processing, 2014, 102:96-99
[22] Monje C A, Vinagre B M, Feliu V, Chen Y Q. Tuning and Auto-Tuning of Fractional Order Controllers for Industry Applications. Control Engineering Practice, 2008, 16(7):798-812
[23] Podlubny I. Fractional Differential Equations. Academic Press, New York, 1999
[24] Charef A, Sun H H, Tsao Y Y, Onaral B. Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, 1992, 37(9):1465-1470
[25] Ahmad W M, Sprott J C. Chaos in fractional-order autonomous nonlinear systems. Chaos, Solitons and Fractals, 2003, 16(2):339-351
[26] Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 2002, 29(1-4):3-22
[27] Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electronic Transactions on Numerical Analysis, 1997, 5:1-6
[28] Diethelm K, Ford N J, Freed A D. Detailed error analysis for a fractional Adams method. Numerical Algorithms, 2004, 36(1):31-52
[29] Diethelm K. The analysis of fractional differential equations. Springer Verlag, 2010
[30] Matignon D. Stability results on fractional differential equations with applications to control processing. In:Computation engineering in system and application multiconference. IMACS, IEEE-SMC Proceedings, Lille, France, 1996, 2:963-968
[31] Ahmed E, El-Sayed A M A, El-Saka H A A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl., 2007, 325(1):542-553

[1]田元生, 李小平, 葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2018, 41(4): 529-539.
[2]王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42.
[3]张文彪, 易鸣. 一类抽象非线性分数阶微分方程的Cauchy问题[J]. 应用数学学报, 2017, 40(6): 874-882.
[4]王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769.
[5]王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572.
[6]张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239.
[7]杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733.
[8]李耀红, 张海燕. 一类分数阶微分方程积分边值问题的可解性[J]. 应用数学学报, 2016, 39(4): 547-554.
[9]田元生, 李小平. 一类带p-Laplacian算子分数阶微分方程边值问题的正解[J]. 应用数学学报, 2016, 39(4): 481-494.
[10]张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480.
[11]张毅. 分数阶力学系统的正则变换理论[J]. 应用数学学报, 2016, 39(2): 249-260.
[12]韩祥临, 石兰芳, 许永红, 莫嘉琪. 分数阶双参数奇摄动非线性微分方程的渐近解[J]. 应用数学学报, 2015, 38(4): 721-729.
[13]郑敏玲. 空间分数阶扩散方程的谱及拟谱方法[J]. 应用数学学报, 2015, 38(3): 434-449.
[14]张立新. 一类含积分边界条件的分数阶微分方程的正解的存在性[J]. 应用数学学报, 2015, 38(3): 423-433.
[15]邓喜才, 向淑文. 不确定下广义博弈强Berge均衡的存在性[J]. 应用数学学报, 2015, 38(2): 201-211.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14550
相关话题/分数 应用数学 系统 结构 统计