删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

二阶奇异差分系统的正周期解

本站小编 Free考研考试/2021-12-27

二阶奇异差分系统的正周期解 许丽1, 崔德标21. 江苏省宿迁中学, 宿迁 223800;
2. 江苏省宿迁市宿城区水利局, 宿迁 223800 Positive Periodic Solutions of Second Order Singular Difference Systems XU Li1, CUI Debiao21. Suqian Middle School in Jiangsu Province, Suqian 223800, China;
2. Water Conservancy Bureau of Sucheng District in Jiangsu Province, Suqian 223800, China
摘要
图/表
参考文献
相关文章(8)
点击分布统计
下载分布统计
-->

全文: PDF(245 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在本文中,我们考虑二阶奇异差分系统
2xn-1)+qnxn)=fnxn))
正周期解的存在性,其中fnx):N×RN\{0}→RNx=0具有奇异性.证明主要依据Leray-Schauder二择一原理.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2013-02-06
PACS:O175
基金资助:国家自然科学基金(No.11171090)资助项目.

引用本文:
许丽, 崔德标. 二阶奇异差分系统的正周期解[J]. 应用数学学报, 2019, 42(3): 289-296. XU Li, CUI Debiao. Positive Periodic Solutions of Second Order Singular Difference Systems. Acta Mathematicae Applicatae Sinica, 2019, 42(3): 289-296.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I3/289


[1] Chu J. Nieto J J. Recent existence results for second order singular periodic differential equations. Bound. Value Probl., 540863:1-20(2009)
[2] del Pino, M A, Manásevich, R F. Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity. J. Differential Equations, 103:260-277(1993)
[3] Habets P, Sanchez L. Periodic solution of some Liénard equations with singularities. Proc. Amer. Math. Soc., 109:1135-1144(1990)
[4] Lazer A C, Solimini S. On periodic solutions of nonlinear differential equations with singularities. Proc. Amer. Math. Soc., 99:109-114(1987)
[5] Torres, P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differential Equations, 190:643-662(2003)
[6] Rachunková, I. Tvrdý, M, Vrkoč, I. Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems. J. Differential Equations, 176:445-469(2001)
[7] Franco D, Webb J R L. Collisionless orbits of singular and nonsingular dynamical systems. Discrete Contin. Dyn. Syst., 15:747-757(2006)
[8] Agarwal R P, Perera, K, O'Regan, D. Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Anal., 58:69-73(2004)
[9] Guo Z M, Yu J S. The existence of periodic and sub-harmonic solutions to sub-quadratic second-order difference equations. J. Lond. Math. Soc., 68:419-430(2003)
[10] Agarwal, R P, O'Regan D. A coupled system of difference equations. Appl. Math. Comput., 114:39-49(2000)
[11] Atici, F M. Cabada, A, Otero-Espinar, A V. Criteria for existence and nonexistence of positive solutions to a discrete peiodic boundary value problem. J. Difference Equ. Appl., 9:765-775(2003)
[12] Atici, F M, Guseinov, G Sh. Positive periodic solutions for nonlinear difference equations with periodic coefficients. J. Math. Anal. Appl., 232:166-182(1999)
[13] Bereanu, C, Thompson, H B. Periodic solutions of second order nonlinear difference equations with discrete φ-Laplacian. J. Math. Anal. Appl., 330:1002-1015(2007)
[14] Furumochi T, Naito T. Periodic solutions of difference equations. Nonlinear Anal., 71:2217-2222(2009)
[15] Chu J, Torres P J, Zhang M. Periodic solutions of second order non-autonomous singular dynamical systems. J. Differential Equations, 239:196-212(2007)
[16] Jiang D, Chu J, Zhang M. Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differential Equations, 211:282-302(2005)
[17] O'Regan, D. Existence theory for nonlinear ordinary differential equations. Kluwer Academic, Dordrecht, 1997

[1]刘炳文, 田雪梅, 杨孪山, 黄创霞. 具有非线性死亡密度和连续分布时滞的Nicholson飞蝇模型的周期解[J]. 应用数学学报, 2018, 41(1): 98-109.
[2]廖华英, 徐向阳, 胡启宙. 对"一类带收获率的离散时滞人口模型正周期解存在性"的探究[J]. 应用数学学报, 2016, 39(4): 598-609.
[3]廖华英, 周正. 一类带收获项的离散Lotka-Volterra合作系统的四个正周期解[J]. 应用数学学报, 2016, 39(3): 441-451.
[4]吕小俊, 张天伟, 赵凯宏. 研究带有收获项的延迟Lotka-Volterra型区域竞争系统八个正周期解的存在性[J]. 应用数学学报, 2016, 39(2): 237-248.
[5]景兰, 莫宜春. 一类泛函微分方程正周期解的存在性和多解性[J]. 应用数学学报(英文版), 2014, 37(2): 234-246.
[6]王宗毅. 一类周期型反应扩散种群系统的空间动力学[J]. 应用数学学报(英文版), 2014, 37(2): 343-355.
[7]董士杰, 葛渭高. 具有时滞和基于比率的两种群捕食者-食饵扩散系统的周期解[J]. 应用数学学报(英文版), 2004, 27(1): 132-141.
[8]滕志东, 陈兰荪. 高维时滞周期的Kolmogorov型系统的正周期解[J]. 应用数学学报(英文版), 1999, 22(3): 446-456.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14639
相关话题/应用数学 系统 统计 人口 空间