删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于生灭过程的多斑块毒杂草入侵模型及空间模拟

本站小编 Free考研考试/2021-12-27

基于生灭过程的多斑块毒杂草入侵模型及空间模拟 刘华1, 杨鹏1, 谢梅1, 冶建华1, 马明1, 魏玉梅21. 西北民族大学数学与计算机科学学院, 兰州 730030;
2. 西北民族大学实验中心, 兰州 730030 Multipatches Poisonous Weeds Invasion Model and Space Simulation Based on Birth and Death Process LIU Hua1, YANG Peng1, XIE Mei1, YE Jianhua1, MA Ming1, WEI Yumei21. School of Mathematics and Computer Science Institute, Northwest Minzu University, Lanzhou 730030, China;
2. The Experiment center, Northwest Minzu University, Lanzhou 730030, China
摘要
图/表
参考文献
相关文章(4)
点击分布统计
下载分布统计
-->

全文: PDF(479 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文将生灭过程模型应用到多斑块毒杂草入侵问题中,研究毒杂草与周围有限数量斑块的可食牧草之间的入侵关系.借助生灭过程理论,利用全期望公式构建微分方程,计算出毒杂草的期望值.通过讨论极限期望,分析得出毒杂草成功入侵至周围斑块的条件.采用元胞自动机理论将入侵模型扩展到空间网格进行模拟研究,分析毒杂草属的空间分布类型,为毒杂草的控制提供数据支持.研究结果表明:(1)若毒杂草的内禀增长率大于死亡率且内禀增长率和死亡率之差大于毒杂草的入侵率时,毒杂草成功入侵至可食牧草的概率变大,增加了可食牧草灭绝的风险,不利于可食牧草的续存;(2)若毒杂草的内禀增长率小于死亡率或内禀增长率和死亡率之差小于毒杂草的入侵率时,毒杂草没有足够的生物量向可食牧草入侵,毒杂草成功入侵至可食牧草的概率变小;(3)毒杂草的入侵作用影响了毒杂草种群的空间分布特征,加快了空间分布的聚集程度.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-03-14
PACS:O212.7
基金资助:国家自然科学基金(31560127);甘肃省科技计划项目(1610RJZA102);西北民族大学中央高校基本科研业务费资金资助项目(31920180116,31920180044);国家民委中青年英才计划((2014)121号);西北民族大学"双一流"和特色发展引导专项资金和西北民族大学2018年度实验室开放项目(SYSKF-2018225,SYSKF-2018236)资助.

引用本文:
刘华, 杨鹏, 谢梅, 冶建华, 马明, 魏玉梅. 基于生灭过程的多斑块毒杂草入侵模型及空间模拟[J]. 应用数学学报, 2018, 41(3): 305-314. LIU Hua, YANG Peng, XIE Mei, YE Jianhua, MA Ming, WEI Yumei. Multipatches Poisonous Weeds Invasion Model and Space Simulation Based on Birth and Death Process. Acta Mathematicae Applicatae Sinica, 2018, 41(3): 305-314.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I3/305


[1] 张自和.无声的危机-荒漠化与草原退化.草业科学, 2000(4):10-12. (Zhang Zihe. Silent crisis-desertification and degeneration of grasasland J. Pratacultural Science, 2000, 87(4):10-12)
[2] 邢福, 王正文. 科尔沁草地有毒植物及保障家畜安全的对策.草业学报, 2000, 9(3):66-73(Xing Fu, Wang Zhengwen. Poisonous plants in Kerqin grassland and strategy to secure safety for livestock J. Acta Prataculturae Sinica, 2000, 9(3):66-73)
[3] 刘华, 金鑫, 谢梅, 蒋芮, 马玮, 魏玉梅. 外来植物物种入侵机理及其空间分布模拟. 兰州大学学报(自然科学版), 2016, 52(3):375-379(Liu Hua, Jin Xin, Xie Mei, Jiang Rui, Ma Wei, Wei Yumei Invasion mechanism and space distribution simulation of exotic plant species. J. Journal of Lanzhou University (Natural Sciences), 2016, 52(3):375-379)
[4] Meike J Wittmann. Ecological and genetic effects of introduced species on their native competitors. J. Theoretical Population Biology, 2013, 84(5):25-35
[5] Berg H Van Den, D Ankasah, A Muhammad, R Rusli, HA Widayanto. Evaluating the Role of Predation in Population Fluctuations of the Soybean Aphid Aphis glycines in Farmer's Fields in Indonesia. J. Journal of Applied Ecology, 1997, 34(4):971-984
[6] Neville J Ford, Patricia M Lumb Enu Ekakaa. Mathematical modelling of plant species interactions in a harsh climate. J. Journal of Computationaland Applied Mathematics, 2010, 234(9):2732-2744
[7] 宋明珠, 胡守鹏.随机环境中可迁移两性分枝过程的极限性质. 东北师大学报(自然科学), 2014, 46(4):282-285(Song Mingzhu, Hu Shoupeng The limit properties of the bisexual branching process with populationsize-dependent migration in random environments. J. Journal of Northeast Normal University (Natural Science Edition), 2014, 46(4):282-285)
[8] James H Matis, Qi Zheng. Describing the Spread of Biological Populations Using Stochastic Compartmental Models with Birth. J. Mathematical Biosciences, 1995:126(2):215-247
[9] Mario A Natiello, Hernan GSolari B. Blowing-up of deterministic fixed points in stochastic population dynamics. J. Science Direc, 2007:209(2):319-335
[10] Gustafsson L, Sternad M. Bringing consistency to simulation of population models-poisson simulation as a bridge between micro and macro simulation. J. Mathematical Biosciences, 2007, 209(2):361-385
[11] Engen S. Stochastic growth and extinction in a spatial geometric Brownian population model with migration and correlated noise. J. Mathematical Biosciences, 2007, 209(1):240-255
[12] 刘华, 谢梅, 蒋芮, 魏玉梅. 基于生灭过程的两斑块种群迁移模型研究. 山东大学学报(理学版), 2016, 51(8):84-89(Liu Hua, Xie Mei, Jiang Rui, Wei Yu Mei. The two grids population migration model based on birthdeath process. J. Journal of Shangdong University (Natural Science), 2016, 51(8):84-89)
[13] Carlson R, Ross S M. Introduction to Probability Models (4th ed.) Technometrics, 2010, 40(1):625-627

[1]韩雪, 程维虎. 基于矩和L矩的三参数I型广义Logistic分布的参数估计[J]. 应用数学学报, 2017, 40(3): 331-344.
[2]唐荣, 冯广波. 生灭型半马氏骨架过程[J]. 应用数学学报(英文版), 2011, 34(3): 460-495.
[3]周宗好, 朱翼隽, 杨卫国. 随机环境下M/M/c重试丢弃的ATM网络排队性能分析[J]. 应用数学学报(英文版), 2010, 33(1): 95-111.
[4]余君, 岳德权, 田瑞玲. 两个不同服务台的可修排队系统的矩阵几何解[J]. 应用数学学报(英文版), 2008, 31(5): 894-900.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14480
相关话题/过程 空间 西北民族大学 应用数学 概率