删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类具有多重时滞的分数阶中立型微分系统的相对可控性

本站小编 Free考研考试/2021-12-27

一类具有多重时滞的分数阶中立型微分系统的相对可控性 杨礼昌, 蒋威, 盛家乐, 刘婷婷, Musarrt Nawaz安徽大学数学科学学院, 合肥 230601 Relative Controllability of Fractional Neutral System with Multiple Delays YANG Lichang, JIANG Wei, SHENG Jiale, LIU Tingting, NAWAZ MusarrtAnhui University, School of Mathematical Sciences, Hefei 230601, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(320 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文对一类具有多重时滞的Caputo分数阶中立型微分控制系统的相对可控性和相对U可控性进行了研究.首先利用Laplace变换得到系统解的一个新的表达式,接着由Grammian矩阵得出系统相对可控的充分必要条件.最后给出了一类非线性分数阶中立型微分控制系统相对U可控的充分必要条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-03-20
PACS:O231
基金资助:国家自然科学基金项目(11371027;10671182;11471015);国家级大学生创新训练项目(201810371042);阜阳师范学院科研项目(2016FSKJ19);安徽高校自然科学研究重点项目(No.KJ2018A0470)资助.

引用本文:
杨礼昌, 蒋威, 盛家乐, 刘婷婷, Musarrt Nawaz. 一类具有多重时滞的分数阶中立型微分系统的相对可控性[J]. 应用数学学报, 2020, 43(1): 1-11. YANG Lichang, JIANG Wei, SHENG Jiale, LIU Tingting, NAWAZ Musarrt. Relative Controllability of Fractional Neutral System with Multiple Delays. Acta Mathematicae Applicatae Sinica, 2020, 43(1): 1-11.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I1/1


[1] Kilbas A A A, Srivastava H M, Trujillo J J. Theory and applications of Fractinal Differential Equations. North-Holland Mathematics Studies, 2006, 204
[2] Diethelm K, Ford N J. Analysis of Fractional Differential Equations. Journal of Mathematical Analysis & Applications, 2002, 265(2):229-248
[3] Zhou X F, Wei J, Hu L G. Controllability of a fractional linear time-invariant neutral dynamical system. Applied Mathematics Letters, 2013, 26(4):418-424
[4] Zhang Y J, Liu S, Yang R, Tan Y Y, Li X Y. Global synchronization of fractional coupled networks with discrete and distributed delays. Physica A:Statistical Mechanics and its Applications, 2019, 514:830-837
[5] Balachandran K, Divya S, Luis RodríguezGermá, Luis, Trujillo J J. Relative controllability of nonlinear neutral fractional integro-differential systems with distributed delays in control. Mathematical Methods in the Applied Sciences, 2015:n/a-n/a.
[6] Babiarz A, Czornik A, Klamka J, Niezabitowski M. Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems, Volume 407. New Controllability Criteria for Fractional Systems with Varying Delays, 2017, 10.1007/978-3-319-45474-0(Chapter 30):333-344
[7] Balachandran K, Zhou Y, Kokila J. Relative controllability of fractional dynamical systems with distributed delays in control. Computers & Mathematics with Applications, 2012, 64(10):3201-3209
[8] Vijayakumar V, Selvakumar A, Murugesu R. Controllability for a class of fractional neutral integro-differential equations with unbounded delay. Applied Mathematics and Computation, 2014, 232:303-312
[9] Sakthivel R, Mahmudov N I, Nieto J J. Controllability for a class of fractional-order neutral evolution control systems. Applied Mathematics and Computation, 2012, 218(20):10334-10340
[10] Sikora Beata. Controllability criteria for time-delay fractional systems with a retarded state. International Journal of Applied Mathematics and Computer Science, 2016, 26(3):521-531
[11] Balachandran K. Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control. Kybernetika-Praha-, 2017, 53(1):161-178
[12] Babiarz A, Niezabitowski M. Controllability Problem of Fractional Neutral Systems:a Survey. Mathematical Problems in Engineering, 2017, 2017(3):15
[13] Sikora Beata. Controllability of time-delay fractional systems with and without constraints. IET Control Theory & Applications, 2016, 10(3):320-327
[14] Balachandran K, Kokila J, Trujillo J J. Relative controllability of fractional dynamical systems with multiple delays in control. Computers & Mathematics with Applications, 2012, 64(10):3037-3045
[15] Jiang W. The controllability of fractional control systems with control delay. Pergamon Press, Inc., 2012
[16] Zhang H, Cao J, Jiang W. Controllability Criteria for Linear Fractional Differential Systems with State Delay and Impulses. Journal of Applied Mathematics, 2013, 2013(2):1-19
[17] Du J, Jiang W, Pang D, Niazi A U K. Controllability for a new class of fractional neutral integro-differential evolution equations with infinite delay and nonlocal conditions. Advances in Difference Equations, 2017, 2017(1)
[18] Lee E B, Marcus L. Foundations of optimal control theory. John Wiley & Sons., Inc., New York-London-Sydney, 1967
[19] Chukwu E N. Euclidean controllability of linear delay systems with limited controls. IEEE Transactions on Automatic Control, 1979, 24(5):798-800
[20] Zhang Y J, Liu S, Yang R, Tan Y Y, Li X Y. Global synchronization of fractional coupled networks with discrete and distributed delays. Physica A:Statistical Mechanics and its Applications, 2019, 514:830-837

[1]王盼盼, 张志信, 蒋威. 分数阶线性退化微分系统有限时间镇定性问题[J]. 应用数学学报, 2020, 43(1): 99-107.
[2]刘有军, 赵环环, 康淑瑰. 分数阶微分方程组非振动解的存在性[J]. 应用数学学报, 2019, 42(5): 606-613.
[3]王晚生, 黄艺, 王为, 饶婷. Hale中立型延迟微分方程的耗散性:新的准则及其应用[J]. 应用数学学报, 2019, 42(4): 564-576.
[4]叶专. Boussinesq方程的一个改进的Beale-Kato-Majda准则[J]. 应用数学学报, 2019, 42(4): 482-491.
[5]杨晓忠, 邵京, 孙淑珍. 双项时间分数阶慢扩散方程的一类高效差分方法[J]. 应用数学学报, 2019, 42(4): 492-505.
[6]樊明智, 王芬玲, 赵艳敏, 史艳华, 张亚东. 时间分数阶扩散方程双线性元的高精度分析[J]. 应用数学学报, 2019, 42(4): 535-549.
[7]任金城, 石东洋. 分布阶波方程全离散有限元方法的高精度分析新途径[J]. 应用数学学报, 2019, 42(3): 410-424.
[8]董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3): 356-370.
[9]冯立杰. 具有分数阶导数的积分边值问题正解的存在性[J]. 应用数学学报, 2019, 42(2): 254-265.
[10]阎晓妹, 尚婷, 赵小国. 基于分数阶滑模控制器的不确定分数阶混沌系统同步[J]. 应用数学学报, 2018, 41(6): 765-776.
[11]田元生, 李小平, 葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2018, 41(4): 529-539.
[12]王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42.
[13]张文彪, 易鸣. 一类抽象非线性分数阶微分方程的Cauchy问题[J]. 应用数学学报, 2017, 40(6): 874-882.
[14]王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769.
[15]张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14707
相关话题/分数 应用数学 系统 统计 学报