摘要本文对一类具有多重时滞的Caputo分数阶中立型微分控制系统的相对可控性和相对U可控性进行了研究.首先利用Laplace变换得到系统解的一个新的表达式,接着由Grammian矩阵得出系统相对可控的充分必要条件.最后给出了一类非线性分数阶中立型微分控制系统相对U可控的充分必要条件. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-03-20 | | 基金资助:国家自然科学基金项目(11371027;10671182;11471015);国家级大学生创新训练项目(201810371042);阜阳师范学院科研项目(2016FSKJ19);安徽高校自然科学研究重点项目(No.KJ2018A0470)资助. |
引用本文: | 杨礼昌, 蒋威, 盛家乐, 刘婷婷, Musarrt Nawaz. 一类具有多重时滞的分数阶中立型微分系统的相对可控性[J]. 应用数学学报, 2020, 43(1): 1-11. YANG Lichang, JIANG Wei, SHENG Jiale, LIU Tingting, NAWAZ Musarrt. Relative Controllability of Fractional Neutral System with Multiple Delays. Acta Mathematicae Applicatae Sinica, 2020, 43(1): 1-11. | | | | 链接本文: | http://123.57.41.99/jweb_yysxxb/CN/或 http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I1/1 |
[1] | Kilbas A A A, Srivastava H M, Trujillo J J. Theory and applications of Fractinal Differential Equations. North-Holland Mathematics Studies, 2006, 204 | [2] | Diethelm K, Ford N J. Analysis of Fractional Differential Equations. Journal of Mathematical Analysis & Applications, 2002, 265(2):229-248 | [3] | Zhou X F, Wei J, Hu L G. Controllability of a fractional linear time-invariant neutral dynamical system. Applied Mathematics Letters, 2013, 26(4):418-424 | [4] | Zhang Y J, Liu S, Yang R, Tan Y Y, Li X Y. Global synchronization of fractional coupled networks with discrete and distributed delays. Physica A:Statistical Mechanics and its Applications, 2019, 514:830-837 | [5] | Balachandran K, Divya S, Luis RodríguezGermá, Luis, Trujillo J J. Relative controllability of nonlinear neutral fractional integro-differential systems with distributed delays in control. Mathematical Methods in the Applied Sciences, 2015:n/a-n/a. | [6] | Babiarz A, Czornik A, Klamka J, Niezabitowski M. Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems, Volume 407. New Controllability Criteria for Fractional Systems with Varying Delays, 2017, 10.1007/978-3-319-45474-0(Chapter 30):333-344 | [7] | Balachandran K, Zhou Y, Kokila J. Relative controllability of fractional dynamical systems with distributed delays in control. Computers & Mathematics with Applications, 2012, 64(10):3201-3209 | [8] | Vijayakumar V, Selvakumar A, Murugesu R. Controllability for a class of fractional neutral integro-differential equations with unbounded delay. Applied Mathematics and Computation, 2014, 232:303-312 | [9] | Sakthivel R, Mahmudov N I, Nieto J J. Controllability for a class of fractional-order neutral evolution control systems. Applied Mathematics and Computation, 2012, 218(20):10334-10340 | [10] | Sikora Beata. Controllability criteria for time-delay fractional systems with a retarded state. International Journal of Applied Mathematics and Computer Science, 2016, 26(3):521-531 | [11] | Balachandran K. Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control. Kybernetika-Praha-, 2017, 53(1):161-178 | [12] | Babiarz A, Niezabitowski M. Controllability Problem of Fractional Neutral Systems:a Survey. Mathematical Problems in Engineering, 2017, 2017(3):15 | [13] | Sikora Beata. Controllability of time-delay fractional systems with and without constraints. IET Control Theory & Applications, 2016, 10(3):320-327 | [14] | Balachandran K, Kokila J, Trujillo J J. Relative controllability of fractional dynamical systems with multiple delays in control. Computers & Mathematics with Applications, 2012, 64(10):3037-3045 | [15] | Jiang W. The controllability of fractional control systems with control delay. Pergamon Press, Inc., 2012 | [16] | Zhang H, Cao J, Jiang W. Controllability Criteria for Linear Fractional Differential Systems with State Delay and Impulses. Journal of Applied Mathematics, 2013, 2013(2):1-19 | [17] | Du J, Jiang W, Pang D, Niazi A U K. Controllability for a new class of fractional neutral integro-differential evolution equations with infinite delay and nonlocal conditions. Advances in Difference Equations, 2017, 2017(1) | [18] | Lee E B, Marcus L. Foundations of optimal control theory. John Wiley & Sons., Inc., New York-London-Sydney, 1967 | [19] | Chukwu E N. Euclidean controllability of linear delay systems with limited controls. IEEE Transactions on Automatic Control, 1979, 24(5):798-800 | [20] | Zhang Y J, Liu S, Yang R, Tan Y Y, Li X Y. Global synchronization of fractional coupled networks with discrete and distributed delays. Physica A:Statistical Mechanics and its Applications, 2019, 514:830-837 |
[1] | 王盼盼, 张志信, 蒋威. 分数阶线性退化微分系统有限时间镇定性问题[J]. 应用数学学报, 2020, 43(1): 99-107. | [2] | 刘有军, 赵环环, 康淑瑰. 分数阶微分方程组非振动解的存在性[J]. 应用数学学报, 2019, 42(5): 606-613. | [3] | 王晚生, 黄艺, 王为, 饶婷. Hale中立型延迟微分方程的耗散性:新的准则及其应用[J]. 应用数学学报, 2019, 42(4): 564-576. | [4] | 叶专. Boussinesq方程的一个改进的Beale-Kato-Majda准则[J]. 应用数学学报, 2019, 42(4): 482-491. | [5] | 杨晓忠, 邵京, 孙淑珍. 双项时间分数阶慢扩散方程的一类高效差分方法[J]. 应用数学学报, 2019, 42(4): 492-505. | [6] | 樊明智, 王芬玲, 赵艳敏, 史艳华, 张亚东. 时间分数阶扩散方程双线性元的高精度分析[J]. 应用数学学报, 2019, 42(4): 535-549. | [7] | 任金城, 石东洋. 分布阶波方程全离散有限元方法的高精度分析新途径[J]. 应用数学学报, 2019, 42(3): 410-424. | [8] | 董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3): 356-370. | [9] | 冯立杰. 具有分数阶导数的积分边值问题正解的存在性[J]. 应用数学学报, 2019, 42(2): 254-265. | [10] | 阎晓妹, 尚婷, 赵小国. 基于分数阶滑模控制器的不确定分数阶混沌系统同步[J]. 应用数学学报, 2018, 41(6): 765-776. | [11] | 田元生, 李小平, 葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2018, 41(4): 529-539. | [12] | 王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42. | [13] | 张文彪, 易鸣. 一类抽象非线性分数阶微分方程的Cauchy问题[J]. 应用数学学报, 2017, 40(6): 874-882. | [14] | 王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769. | [15] | 张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14707
分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Klein-Gordon-Maxwell系统的无穷多变号解张鲁豫华北水利水电大学数学与统计学院,郑州450011InfinitelyManySign-changingSolutionsfortheNonlinearKlein-Gordon-MaxwellSystemZHANGLuyuSchoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27异构多智能体系统的非凸输入约束一致性黄辉1,莫立坡2,曹显兵21.广东财经大学统计与数学学院,广州510320;2.北京工商大学数学与统计学院,北京100048ConsensusofHeterogeneousMulti-agentSystemswithNonconvexInputConstraint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶微分方程组非振动解的存在性刘有军,赵环环,康淑瑰山西大同大学数学与统计学院,大同037009ExistenceforNonoscillatorySolutionsofSystemofFractionalDifferentialEquationsLIUYoujun,ZhaoHuanhuan,Ka ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双项时间分数阶慢扩散方程的一类高效差分方法杨晓忠,邵京,孙淑珍华北电力大学数理学院,北京102206AClassofEfficientDifferenceMethodsfortheDouble-termTimeFractionalSub-diffusionEquationYANGXiaozhong, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间分数阶扩散方程双线性元的高精度分析樊明智,王芬玲,赵艳敏,史艳华,张亚东许昌学院数学与统计学院,许昌461000HighAccuracyAnalysisoftheBilinearElementfortheTime-FractionalDiffusionEqustionsFANMinzhi,WAN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二阶奇异差分系统的正周期解许丽1,崔德标21.江苏省宿迁中学,宿迁223800;2.江苏省宿迁市宿城区水利局,宿迁223800PositivePeriodicSolutionsofSecondOrderSingularDifferenceSystemsXULi1,CUIDebiao21.Suqian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|