摘要本文研究了一类具有非常数位势的Klein-Gordon-Maxwell系统: ???20190605??? 其中ω>0是一个常数,u,φ:R3→R.利用临界点理论和下降流不变集的方法,得到了上述Klein-Gordon-Maxwell系统无穷多变号解的存在性. |
[1] | Benci V, Fortunato D. The nonlinear Klein-Gordon-Maxwell equation coupled with the Maxwell equations. Proceedings of the Third World Congress of Nonlinear Analysts, 2001, 47:6065-6072 | [2] | Benci V, Fortunato D. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys., 2002, 14(4):409-420 | [3] | D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud., 2004, 4(3):307-322 | [4] | D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schödinger-Maxwell equations. Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(5):893-906 | [5] | Azzollini A, Pisani L, Pomponio A. Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system. P. Roy. Soc. Edinburgh Sect. A, 2011, 141(3):449-463 | [6] | Azzollini A, Pomponio A. Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations. Topol. Method. Nonl. An., 2010, 35(1):33-42 | [7] | Wang F. Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system. Nonlinear Anal., 2011, 74(3):4796-4803 | [8] | Vaira G. Semiclassical states for the nonlinear Klein-Gordon-Maxwell system. J. Pure Appl. Math. Adv. Appl., 2010, 4(1):59-95 | [9] | Makita P D. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete Contin. Dyn. Syst. Series A, 2012, 32(6):2271-2283 | [10] | Cassani D. Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations. Nonlinear Anal., 2004, 58(7-8):733-747 | [11] | Wang F. Solitary waves for the Klein-Gordon-Maxwell system with critical exponent. Nonlinear Anal., 2011, 74(3):827-835 | [12] | Candela A, Salvatore A. Multiple solitary waves for non-homogeneous Klein-Gordon-Maxwell equations, in:More Progress in Analysis. World Scientific, Hackensack, NJ, 2009, 753-762 | [13] | Carrião P C, Cunha P L, Miyagaki O H. Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Commun. Pure Appl. Anal., 2011, 10(2):709-718 | [14] | Carrião P C, Cunha P L, Miyagaki O H. Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials. Nonlinear Anal., 2012, 75(10):4068-4078 | [15] | Chen S J, Tang C L. Multiple solutions waves for non-homogeneous Schödinger-Maxwell and Klein-Gordon-Maxwell equations on R3. NoDEA Nonlinear Differential Equations Appl., 2010, 17(5):559-574 | [16] | Jeong W, Seok J. On perturbation of a functional with the mountain pass geometry. Calc. Var. Partial Differential Equations, 2014, 49(1-2):649-668 | [17] | Mugnai D. Solitary waves in abelian gauge theories with strongly nonlinear potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27(4):1055-1071 | [18] | He X M. Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system. Acta Appl. Math., 2014, 130(1):237-250 | [19] | Ding L, Li L. Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential. Comput. Math. Appl., 2014, 68(5):589-595 | [20] | Li L, Tang C L. Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system. Nonlinear Anal., 2014, 110(3):157-169 | [21] | Liu Z L, Wang Z Q, Zhang J J. Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann. Mat. Pur. Appl., 2016, 195(3):775-794 | [22] | Liu J, Liu X, Wang Z Q. Multiple mixed states of nodal solutions for nonlinear Schödinger systems. Calc. Var.,2015, 52(3-4):565-586 | [23] | Bartsch T, Liu Z L, Weth T. Nodal solutions of a p-Laplacian equation. P. Lond. Math. Soc., 2005, 91(1):129-152 | [24] | Bartsch T, Liu Z L, Weth T. Sign-changing solutions of superlinear Schödinger equations. Commun. Part. Diff. Eq., 2004, 29(1):25-42 | [25] | Bartsch T, Pankov A A, Wang Z Q. Nonlinear Schödinger equations with steep potential well. Commun. Contemp. Math., 2001, 3(4):1-21 | [26] | Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm. Part. Diff. Eq., 1995, 20(9-10):1725-1741 | [27] | Bartsch T, Wang Z Q. On the existence of sign-changing solutions for semilinear Dirichlet problems. Top. Method. Nonl. An., 1996, 7(1):115-131 | [28] | Bartsch T, Wang Z Q, Willem M. The Dirichlet problem for superlinear elliptic equations. Stationary Partial Differential Equations. Vol. II, in:Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, 1-55 | [29] | Zou W M, Schechter M. Critical point theory and its applications. New York:Springer, 2006 | [30] | Bartsch T, Liu Z L. On a superlinear elliptic p-Laplacian equation. J. Differential Equation, 2004, 198(1):149-175 |
[1] | 张申贵. 一类变指数基尔霍夫型方程的无穷多解[J]. 应用数学学报, 2018, 41(6): 801-810. | [2] | 张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480. | [3] | 谭伟明, 周展. 一类二阶非线性差分方程同宿解的存在性[J]. 应用数学学报, 2015, 38(6): 1040-1049. | [4] | 熊明, 杨泽恒, 王彭德. 半空间中一个具跳跃性的边值问题[J]. 应用数学学报, 2015, 38(4): 586-596. | [5] | 陈静. 一类带渐近二次非线性项的分数阶Dirichlet边值问题解的存在性[J]. 应用数学学报, 2015, 38(1): 53-66. | [6] | 买阿丽, 孙国伟, 张凤琴. 一类周期离散非线性薛定谔系统的驻波解[J]. 应用数学学报(英文版), 2014, 37(1): 22-30. | [7] | 李光华. 次线性Duffing系统的多重次调和解[J]. 应用数学学报(英文版), 1995, 18(3): 461-469. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14758
异构多智能体系统的非凸输入约束一致性黄辉1,莫立坡2,曹显兵21.广东财经大学统计与数学学院,广州510320;2.北京工商大学数学与统计学院,北京100048ConsensusofHeterogeneousMulti-agentSystemswithNonconvexInputConstraint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶微分方程组非振动解的存在性刘有军,赵环环,康淑瑰山西大同大学数学与统计学院,大同037009ExistenceforNonoscillatorySolutionsofSystemofFractionalDifferentialEquationsLIUYoujun,ZhaoHuanhuan,Ka ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双项时间分数阶慢扩散方程的一类高效差分方法杨晓忠,邵京,孙淑珍华北电力大学数理学院,北京102206AClassofEfficientDifferenceMethodsfortheDouble-termTimeFractionalSub-diffusionEquationYANGXiaozhong, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间分数阶扩散方程双线性元的高精度分析樊明智,王芬玲,赵艳敏,史艳华,张亚东许昌学院数学与统计学院,许昌461000HighAccuracyAnalysisoftheBilinearElementfortheTime-FractionalDiffusionEqustionsFANMinzhi,WAN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二阶奇异差分系统的正周期解许丽1,崔德标21.江苏省宿迁中学,宿迁223800;2.江苏省宿迁市宿城区水利局,宿迁223800PositivePeriodicSolutionsofSecondOrderSingularDifferenceSystemsXULi1,CUIDebiao21.Suqian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有分数阶导数的积分边值问题正解的存在性冯立杰天津大学数学学院,天津300350ExistenceofPositiveSolutionsforIntegralBoundaryValueProblemswithFractionalDerivativesFENGLijieSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有两个小世界联接的时滞环形神经网络系统的稳定性分析李敏,赵东霞,毛莉中北大学理学院数学学科部,太原030051StabilityAnalysisofaDelayedRingNeuralNetworkwithTwoSmallWorldConnectionsLIMin,ZHAODongxia,MAOL ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|