删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Klein-Gordon-Maxwell系统的无穷多变号解

本站小编 Free考研考试/2021-12-27

Klein-Gordon-Maxwell系统的无穷多变号解 张鲁豫华北水利水电大学数学与统计学院, 郑州 450011 Infinitely Many Sign-changing Solutions for the Nonlinear Klein-Gordon-Maxwell System ZHANG LuyuSchool of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
摘要
图/表
参考文献
相关文章(7)
点击分布统计
下载分布统计
-->

全文: PDF(374 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类具有非常数位势的Klein-Gordon-Maxwell系统:
???20190605???
其中ω>0是一个常数,uφ:R3→R.利用临界点理论和下降流不变集的方法,得到了上述Klein-Gordon-Maxwell系统无穷多变号解的存在性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-08-27
PACS:O177.91
基金资助:华北水利水电大学博士科研启动基金(No.40609)资助项目.

引用本文:
张鲁豫. Klein-Gordon-Maxwell系统的无穷多变号解[J]. 应用数学学报, 2019, 42(6): 779-792. ZHANG Luyu. Infinitely Many Sign-changing Solutions for the Nonlinear Klein-Gordon-Maxwell System. Acta Mathematicae Applicatae Sinica, 2019, 42(6): 779-792.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I6/779


[1] Benci V, Fortunato D. The nonlinear Klein-Gordon-Maxwell equation coupled with the Maxwell equations. Proceedings of the Third World Congress of Nonlinear Analysts, 2001, 47:6065-6072
[2] Benci V, Fortunato D. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys., 2002, 14(4):409-420
[3] D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud., 2004, 4(3):307-322
[4] D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schödinger-Maxwell equations. Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(5):893-906
[5] Azzollini A, Pisani L, Pomponio A. Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system. P. Roy. Soc. Edinburgh Sect. A, 2011, 141(3):449-463
[6] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations. Topol. Method. Nonl. An., 2010, 35(1):33-42
[7] Wang F. Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system. Nonlinear Anal., 2011, 74(3):4796-4803
[8] Vaira G. Semiclassical states for the nonlinear Klein-Gordon-Maxwell system. J. Pure Appl. Math. Adv. Appl., 2010, 4(1):59-95
[9] Makita P D. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete Contin. Dyn. Syst. Series A, 2012, 32(6):2271-2283
[10] Cassani D. Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations. Nonlinear Anal., 2004, 58(7-8):733-747
[11] Wang F. Solitary waves for the Klein-Gordon-Maxwell system with critical exponent. Nonlinear Anal., 2011, 74(3):827-835
[12] Candela A, Salvatore A. Multiple solitary waves for non-homogeneous Klein-Gordon-Maxwell equations, in:More Progress in Analysis. World Scientific, Hackensack, NJ, 2009, 753-762
[13] Carrião P C, Cunha P L, Miyagaki O H. Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Commun. Pure Appl. Anal., 2011, 10(2):709-718
[14] Carrião P C, Cunha P L, Miyagaki O H. Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials. Nonlinear Anal., 2012, 75(10):4068-4078
[15] Chen S J, Tang C L. Multiple solutions waves for non-homogeneous Schödinger-Maxwell and Klein-Gordon-Maxwell equations on R3. NoDEA Nonlinear Differential Equations Appl., 2010, 17(5):559-574
[16] Jeong W, Seok J. On perturbation of a functional with the mountain pass geometry. Calc. Var. Partial Differential Equations, 2014, 49(1-2):649-668
[17] Mugnai D. Solitary waves in abelian gauge theories with strongly nonlinear potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27(4):1055-1071
[18] He X M. Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system. Acta Appl. Math., 2014, 130(1):237-250
[19] Ding L, Li L. Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential. Comput. Math. Appl., 2014, 68(5):589-595
[20] Li L, Tang C L. Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system. Nonlinear Anal., 2014, 110(3):157-169
[21] Liu Z L, Wang Z Q, Zhang J J. Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann. Mat. Pur. Appl., 2016, 195(3):775-794
[22] Liu J, Liu X, Wang Z Q. Multiple mixed states of nodal solutions for nonlinear Schödinger systems. Calc. Var.,2015, 52(3-4):565-586
[23] Bartsch T, Liu Z L, Weth T. Nodal solutions of a p-Laplacian equation. P. Lond. Math. Soc., 2005, 91(1):129-152
[24] Bartsch T, Liu Z L, Weth T. Sign-changing solutions of superlinear Schödinger equations. Commun. Part. Diff. Eq., 2004, 29(1):25-42
[25] Bartsch T, Pankov A A, Wang Z Q. Nonlinear Schödinger equations with steep potential well. Commun. Contemp. Math., 2001, 3(4):1-21
[26] Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm. Part. Diff. Eq., 1995, 20(9-10):1725-1741
[27] Bartsch T, Wang Z Q. On the existence of sign-changing solutions for semilinear Dirichlet problems. Top. Method. Nonl. An., 1996, 7(1):115-131
[28] Bartsch T, Wang Z Q, Willem M. The Dirichlet problem for superlinear elliptic equations. Stationary Partial Differential Equations. Vol. II, in:Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, 1-55
[29] Zou W M, Schechter M. Critical point theory and its applications. New York:Springer, 2006
[30] Bartsch T, Liu Z L. On a superlinear elliptic p-Laplacian equation. J. Differential Equation, 2004, 198(1):149-175

[1]张申贵. 一类变指数基尔霍夫型方程的无穷多解[J]. 应用数学学报, 2018, 41(6): 801-810.
[2]张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480.
[3]谭伟明, 周展. 一类二阶非线性差分方程同宿解的存在性[J]. 应用数学学报, 2015, 38(6): 1040-1049.
[4]熊明, 杨泽恒, 王彭德. 半空间中一个具跳跃性的边值问题[J]. 应用数学学报, 2015, 38(4): 586-596.
[5]陈静. 一类带渐近二次非线性项的分数阶Dirichlet边值问题解的存在性[J]. 应用数学学报, 2015, 38(1): 53-66.
[6]买阿丽, 孙国伟, 张凤琴. 一类周期离散非线性薛定谔系统的驻波解[J]. 应用数学学报(英文版), 2014, 37(1): 22-30.
[7]李光华. 次线性Duffing系统的多重次调和解[J]. 应用数学学报(英文版), 1995, 18(3): 461-469.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14758
相关话题/应用数学 系统 华北水利水电大学 统计 分数