摘要本文通过构造新的Lyapunov函数,利用线性矩阵不等式(LMI)和广义Gronwall不等式,研究了分数阶线性退化微分系统的有限时间镇定性问题.充分考虑退化和扰动对系统稳定性的影响,给出了在状态反馈控制器作用下,分数阶退化微分系统在有限时间内镇定的充分条件.并通过两个例子验证了定理条件的可行性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-01-16 | | 基金资助:国家自然科学基金(11371027,11471015,11601003),安徽省自然科学基金(1608085MA12)和高等学校博士点专项科研资助基金(20123401120001)资助项目. |
[1] | Oldham K B, Spanier J. The fractional calculus. New York-London:Academic Press, 1974 | [2] | Kilbas A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations. New York:Elsevier, 2006 | [3] | Feng J E, Wu Z, Sun J B. Finite-time control of linear singular systems with parametric uncertainties and disturbances. Acta Automatica Sinica, 2005, 31(4):634-637 | [4] | Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Commun Nonlinear Sci. Numer. Simulat., 2014, 19:2951-2957 | [5] | Ye H P, Gao J M, Din Y S. A generalized gronwall inequality and its application to a fractional differential equation. Math. Anal. Appl., 2014, 328:1075-1081 | [6] | Zhao S W, Sun J T, Liu L. Finite-time stability of linear time-varying singular systems with impulsive effects. Int. J. Control, 2008, 81(11):1824-1829 | [7] | Gallegos J A, Duarte-Mermoud M A. Boundedness and convergence on fractional order systems. Journal of Computational and Applied Mathematics, 2016, 296:815-826 | [8] | Aguila-Camacho N, Duarte-Mermoud M A. Boundedness of the solutions for certain classes of fractional differential equations with application to adaptive systems. ISA Transactions, 2016, 60:82-88 | [9] | Zhang J F, Zhao X D, Chen Y. Finite-time stability and stabilization of fractional order positive switched systems. Circuits Syst Signal Process, 2016, 35:2450-2470 | [10] | Gallegos J A, Duarte-Mermoud M A. On the Lyapunov theory for fractional order systems. Applied Mathematics and Computation, 2016, 287/288:161-170 | [11] | Kamenkov G. On stability of motion over a finite interval of time. Appl. Mat. Mech, 1953, 17:529-540 | [12] | Lazarević M P, Spasić A M. Finite time stability analysis of fractional order time delay systems:Gronwall's approach. Mathematical and Computer Modeling, 2009, 49:475-481 | [13] | Lazarevic M P. Finite time stability analysis of PDα fractional control of robotic time-delay systems. Mechanics Research Communications, 2006, 33:269-279 | [14] | Liu K W, Tu Z K. Finite time stabilization and boundedness of fractional differential neutral systems. College Mathematics, 2017, 33(4):24-31 | [15] | Ma Y J, Wu B W, Wang Y E. Finite-time stability and finite-time boundedness of fractional order linear systems. Neurocomputing, 2016, 173:2076-2082 | [16] | Li M M, Wang J R. Finite time stability of fractional delay differential equations. Applied Mathematics Letters, 2017, 64:170-176 | [17] | Chen L P, Liu C, Wu R C, He Y G, Chai Y. Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Neural Comput Applic, 2016, 27:549-556 | [18] | Jiang W. The constant variation formulae for singular fractional differential systems with delay. Computers and Mathematics with Applications, 2010, 59(3):1184-1190 | [19] | Kunkel P, Mehrmann V. Differential algebraic equations. Switzerland:European Mathematical Society, 2006 | [20] | Dai L. Singular control systems. Berlin, Heidelberg:Springer-Verlag, 1989 | [21] | Campbell S L. Singular systems of differential equations. Sanfrancisco London Melbourne:Pitman advanced publishing Program, 1980 | [22] | Campbell S L, Hong V, Linh V H. Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions. Applied Mathematics and Computation, 2009, 208:397-415 | [23] | Zhang Z X, Jiang W. Some results of the degenerate fractional differential system with delay. Computers and Mathematics with Applications, 2011, 62:1284-129 | [24] | Pang D H, Jiang W. Finite-time stability analysis of fractional singular time-delay systems. Advances in Difference Equations, 2014, 259:1-11 |
[1] | 杨礼昌, 蒋威, 盛家乐, 刘婷婷, Musarrt Nawaz. 一类具有多重时滞的分数阶中立型微分系统的相对可控性[J]. 应用数学学报, 2020, 43(1): 1-11. | [2] | 刘有军, 赵环环, 康淑瑰. 分数阶微分方程组非振动解的存在性[J]. 应用数学学报, 2019, 42(5): 606-613. | [3] | 叶专. Boussinesq方程的一个改进的Beale-Kato-Majda准则[J]. 应用数学学报, 2019, 42(4): 482-491. | [4] | 杨晓忠, 邵京, 孙淑珍. 双项时间分数阶慢扩散方程的一类高效差分方法[J]. 应用数学学报, 2019, 42(4): 492-505. | [5] | 樊明智, 王芬玲, 赵艳敏, 史艳华, 张亚东. 时间分数阶扩散方程双线性元的高精度分析[J]. 应用数学学报, 2019, 42(4): 535-549. | [6] | 何道江, 盛玮芮, 方龙祥. 带有测量误差的Wiener退化模型的客观Bayes分析[J]. 应用数学学报, 2019, 42(4): 506-517. | [7] | 任金城, 石东洋. 分布阶波方程全离散有限元方法的高精度分析新途径[J]. 应用数学学报, 2019, 42(3): 410-424. | [8] | 董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3): 356-370. | [9] | 冯立杰. 具有分数阶导数的积分边值问题正解的存在性[J]. 应用数学学报, 2019, 42(2): 254-265. | [10] | 阎晓妹, 尚婷, 赵小国. 基于分数阶滑模控制器的不确定分数阶混沌系统同步[J]. 应用数学学报, 2018, 41(6): 765-776. | [11] | 田元生, 李小平, 葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2018, 41(4): 529-539. | [12] | 李志广, 康淑瑰. 一类退化抛物变分不等式问题解的存在性和唯一性[J]. 应用数学学报, 2018, 41(3): 289-304. | [13] | 王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42. | [14] | 张文彪, 易鸣. 一类抽象非线性分数阶微分方程的Cauchy问题[J]. 应用数学学报, 2017, 40(6): 874-882. | [15] | 王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14714
Klein-Gordon-Maxwell系统的无穷多变号解张鲁豫华北水利水电大学数学与统计学院,郑州450011InfinitelyManySign-changingSolutionsfortheNonlinearKlein-Gordon-MaxwellSystemZHANGLuyuSchoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27异构多智能体系统的非凸输入约束一致性黄辉1,莫立坡2,曹显兵21.广东财经大学统计与数学学院,广州510320;2.北京工商大学数学与统计学院,北京100048ConsensusofHeterogeneousMulti-agentSystemswithNonconvexInputConstraint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶微分方程组非振动解的存在性刘有军,赵环环,康淑瑰山西大同大学数学与统计学院,大同037009ExistenceforNonoscillatorySolutionsofSystemofFractionalDifferentialEquationsLIUYoujun,ZhaoHuanhuan,Ka ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双项时间分数阶慢扩散方程的一类高效差分方法杨晓忠,邵京,孙淑珍华北电力大学数理学院,北京102206AClassofEfficientDifferenceMethodsfortheDouble-termTimeFractionalSub-diffusionEquationYANGXiaozhong, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间分数阶扩散方程双线性元的高精度分析樊明智,王芬玲,赵艳敏,史艳华,张亚东许昌学院数学与统计学院,许昌461000HighAccuracyAnalysisoftheBilinearElementfortheTime-FractionalDiffusionEqustionsFANMinzhi,WAN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二阶奇异差分系统的正周期解许丽1,崔德标21.江苏省宿迁中学,宿迁223800;2.江苏省宿迁市宿城区水利局,宿迁223800PositivePeriodicSolutionsofSecondOrderSingularDifferenceSystemsXULi1,CUIDebiao21.Suqian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有分数阶导数的积分边值问题正解的存在性冯立杰天津大学数学学院,天津300350ExistenceofPositiveSolutionsforIntegralBoundaryValueProblemswithFractionalDerivativesFENGLijieSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|