删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双参数奇摄动非线性抛物型系统的广义尖层解

本站小编 Free考研考试/2021-12-27

双参数奇摄动非线性抛物型系统的广义尖层解 冯依虎1,2, 侯磊2, 莫嘉琪31. 亳州学院电子与信息工程系, 亳州 236800;
2. 上海大学数学系, 上海 200436;
3. 安徽师范大学数学与统计学院, 芜湖 241003 The Generalized Spike Layer Solution to Singular Perturbation Nonlinear Parabolic System with Two Parameters FENG Yihu1,2, HOU Lei2, MO Jiaqi31. Department of Electronics and Information Engineering, Bozhou University, Bozhou 236800, China;
2. Department of mathematics, Shanghai University, Shanghai 200436, China;
3. School of Mathematics & Statistics, Anhui Normal University, Wuhu 241003, China
摘要
图/表
参考文献
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(358 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类非线性抛物型微分系统的奇异摄动问题.首先利用奇异摄动方法构造了外部解.其次,分别采用多尺度法和伸长变量法获得尖层校正项、边界层校正项和初始层校正项.最后得到了广义解的渐近展开解.利用不动点定理证明了渐近解的一致有效性.该渐近解可用于对广义解进行解析运算,可以了解其更多的特征,因此具有较好的应用前景.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-04-16
PACS:O175.4
基金资助:国家自然科学基金(11271247),安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016520),安徽省教育厅自然科学重点基金项目(KJ2015A347,KJ2017A702,KJ2019A1300),安徽省教育厅重点教研项目(2018jyxm0594,2016jyxm0677,2017jyxm0591),亳州学院重点教学研究项目(2017zdjy02)和亳州学院重点科学研究项目(BYZ2017B02,BYZ2017B03)资助.

引用本文:
冯依虎, 侯磊, 莫嘉琪. 双参数奇摄动非线性抛物型系统的广义尖层解[J]. 应用数学学报, 2020, 43(5): 821-832. FENG Yihu, HOU Lei, MO Jiaqi. The Generalized Spike Layer Solution to Singular Perturbation Nonlinear Parabolic System with Two Parameters. Acta Mathematicae Applicatae Sinica, 2020, 43(5): 821-832.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I5/821


[1] De Jager, E M, Jiang F R. The Theory of Singular Perturbation. Amsterdam:North-Holland Publishing Co., 1996
[2] Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problems. Basel:Birkhauserm Verlag AG, 2007
[3] Constantin A. On the existence of positive solutions of second order differential equations. Ann. Mat. Pura. Appl., 2005, 184(4):131-138
[4] Ertem T, Zafer A. Monotone positive solutions for a class of second-order nonlinear differential equations. J. Comput. Appl. Math., 2014, 259:672-681
[5] Hovhannisyan G, Vulanovic R. Stability inequalities for one-dimensional singular perturbation problems. Nonlinear Stud., 2008, 15(4):297-322
[6] Graef J R, Kong L. Solutions of second order multi-point boundary value problems. Math. Proc. Camb. Philos. Soc., 2008, 145(2):489-510
[7] Barbu L, Cosma E. Elliptic regularizations for the nonlinear heat equation. J. Math. Anal. Appl., 2009, 351(2):392-399
[8] Martinez S, Wolanskin. A singular perturbation problem for a quasi-linear operator satisfying the natural condition of Lieberman. SIAM J. Math. Anal., 2009, 41(1):318-359
[9] Kellogg R B, Koptev N A. Singularly perturbed semilinear reaction-diffusion problem in a polygonal domain. J. Differ. Equations, 2010, 248(1):184-208
[10] Bonfoh A, Grassrlli M, Miranville A. Intertial manifolds for a singular perturbation of the viscous Cahn-Hilliiard-Gurtin equation. Topol. Methods Nonlinear Anal., 2010, 35(1):155-185
[11] Faye L, Frenod E, Seck D. Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment. Discrete Contin. Dyn. Syst., 2011, 29(3):1001-1030
[12] Tian C R, Zhu P. Existence and asymptotic behavior of solutions for quasilinear parabolic systems. Acta Appl. Math., 2012, 121(1):157-173
[13] Skrynnikox Y. Solving initial value problem by matching asymptotic expansions. SIAM J. Appl. Math., 2012, 72(1):405-416
[14] Samusenko P F. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations. J. Math. Sci., New York, 2013, 189(5):834-847
[15] Mo J Q. Singular perturbation for a class of nonlinear reaction diffusion systems. Science in China, Ser A., 1989, 32(11):1306-1315
[16] Mo J Q, Lin W T. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations. J. Sys. Sci. & Complexity, 2008, 20(1):119-128
[17] Mo J Q. A class of singulaely perturbed differential-difference reaction diffusion equations. Adv. Math., 2009, 38(2):227-230
[18] Mo J Q. Approximate solution of homotopic mapping to solitary for generalized nonlinear KdV system. Chin. Phys. Lett., 2009, 26(1):010204
[19] Mo J Q. A variational iteration solving method for a class of generalized Boussinesq equations. Chin. Phys. Lett., 2009, 26(6):060202
[20] Mo J Q. Homotopic mapping solving method for gain fluency of laser pulse amplifier. Science in China, Ser. G, 2009, 39(5):568-661
[21] Mo J Q, Lin W T. Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation. Chin. Phys., 2008, 17(2):370-372
[22] Mo J Q. A class of homotopic solving method for ENSO mpdel. Acta Math. Sci., 2009, 29(1):101-109
[23] Mo J Q, Chen H J. The corner layer solution of Robin problem for semilinear equation. Math. Appl., 2012, 25(1):1-4
[24] Mo J Q, Lin Y H, Lin W T, Chen L H. Perturbed solving method for interdecadal sea-air oscillator model. Chin. Geographical Sci., 2012, 22(1):42-47
[25] Feng Y H, Mo J Q. Asymptotic solution for singularly perturbed fractional order differential equation. J. Math., 2016, 36(2):239-245
[26] Feng Y H, Chen X F, Mo J Q. The shock wave solution of a class of singularly perturbed problem for generalized nonlinear reaction diffusion equation. Math. Appl., 2017, 30(1):1-7
[27] 冯依虎, 莫嘉琪. 一类非线性非局部扰动LGH方程的孤子行波解. 应用数学和力学, 2016, 37(4):426-433(Feng Y H, Mo J Q. A class of soliton travelling wave solution for the nonlinear nonlocal disturbed LGH equation. Appl. Math. Mech., 2016, 37(4):426-433)
[28] 冯依虎, 史兰芳, 莫嘉琪. 关于将飞秒脉冲激光用于纳米金属薄膜传导系统的研究. 工程数学学报, 2017, 34(1):13-20(Feng Y H, Shi L F, Mo J Q. Study of transfers system for femtosecond pulse laser to Nano metal film. Chin. J. Engin. Math., 2017, 34(1):13-20)
[29] 冯依虎, 陈怀军, 莫嘉琪. 激光脉冲放大器增益通量耦合系统解. 应用数学和力学, 2017, 38(5):561-569(Feng Y H, Chen H J, Mo J Q. Asymptotic solution to a class of nonlinear singular perturbation autonomic differential system. Appl. Math. Mech., 2017, 38(5):561-569)
[30] 冯依虎, 莫嘉琪. 一类广义奇摄动非线性双曲型积分-微分方程模型. 吉林大学学报(理学版), 2017, 55(5):1055-1060(Feng Y H, Mo J Q. A class of generalized singularly perturbed nonlinear hyperbolic integraldifferential equation model. J. Jilin Univ., 2017, 55(5):1055-1060)

[1]王岳宝. 关于B-值强平稳相依随机变量列一类小参数级数的渐近性[J]. 应用数学学报(英文版), 1995, 18(3): 344-352.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14821
相关话题/系统 应用数学 统计 数学 力学