删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有舍入误差微观结构噪音高频数据的杠杆效应分析

本站小编 Free考研考试/2021-12-27

具有舍入误差微观结构噪音高频数据的杠杆效应分析 蔺富明1,2, 周勇31. 上海财经大学统计与管理学院, 上海, 200433;
2. 四川轻化工大学数学与统计学院, 自贡, 643000;
3. 统计与数据科学前沿理论及应用教育部重点实验室 华东师范大学统计交叉科学研究院, 上海, 200062 Analysis of Leverage Effect Based on High Frequency Data with Rounding Error Market Microstructure Noise LIN Fuming1,2, ZHOU Yong31. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China;
2. School of Mathematics and Statistics, Sichuan University of Science & Engineering, Zigong 643000, China;
3. Key Laboratory of Advanced Theory an Application in Statistics and Data Science, MOE, and Academy of Statistics and Interdisciplinary Sciences and School of Statistics, East China Normal University, Shanghai 200062, China
摘要
图/表
参考文献
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(453 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本杠杆效应反映了股票收益率与其波动率变动之间的负相关关系,它一直是金融研究的核心问题.在高频时间序列数据中,传统的简单相关系数估计是不相合的,为此一些****给出了新的杠杆效应刻画——积分杠杆效应,并给出该杠杆效应的估计量.众所周知,高频数据易受市场微观结构噪音的干扰,其中舍入误差是非常重要、实际中普遍存在的一类.高频数据被舍入误差噪音污染后,本文研究上述****提出的杠杆效应估计量的稳健性,获得杠杆效应估计的相合性及渐近正态性,并用随机模拟对结果进行了验证.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-06-12
PACS:O211.64
基金资助:国家自然科学基金委重点项目(No.71931004)和重大研究计划培育项目(No.92046005),桥梁无损检测四川省高校重点实验室项目(No.2018QZJ01)和四川轻化工大学人才引进项目(No.2019RC10)资助.

引用本文:
蔺富明, 周勇. 具有舍入误差微观结构噪音高频数据的杠杆效应分析[J]. 应用数学学报, 2021, 44(1): 16-30. LIN Fuming, ZHOU Yong. Analysis of Leverage Effect Based on High Frequency Data with Rounding Error Market Microstructure Noise. Acta Mathematicae Applicatae Sinica, 2021, 44(1): 16-30.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I1/16


[1] Wang C D, Mykland P A. The estimation of leverage effect with high-frequency data. J. the American Statistical Association, 2014, 109(505):197-215
[2] Bouchaud J P, Matacz A, Potters M. Leverage effect in financial markets:The retarded volatility model. Physical review letters, 2001, 87(22):1-12
[3] Bollerslev T, Litvinova J, Tauchen G. Leverage and volatility feedback effects in high-frequency data. J. Financial Econometrics, 2006, 4(3):353-384
[4] Black F. Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 1976, 177-181
[5] Christie A A. The stochastic behavior of common stock variances:Value, leverage and interest rate effects. J. Financial Economics, 1982, 10(4):407-432
[6] Nelson, D. Conditional heteroskedasticity in asset pricing:a new approach. Econometrica, 1991, 59:347-370
[7] Engle R, Ng V. Measuring and testing the impact of news in volatility. J. Finance, 1993, 48(5):1749-1778
[8] Glosten L R, Jagannanthan R, Runkle D. On the relationship between the expected value and the volatility of the nominal excess return on stocks. J. Finance, 1993, 48(5):1779-1802
[9] Harvey A C, Shephard N. Estimation of an asymmetric stochastic volatility model for asset returns. J. Business and Economic Statistics, 1996, 14(4):429-434
[10] Meyer R, Yu J. BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal, 2000, 3(2):198-215
[11] Jacquier E, Polson N G, Rossi P E. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econometrics, 2004, 122(1):185-212
[12] Yu J. On leverage in a stochastic volatility model. J. Econometrics, 2005, 127(2):165-178
[13] Barndorff-Nielsen O E, Kinnebrock S, Shephard N. Measuring downside risk-realised semivariance. Department of Economics Working Paper, University of Oxford, 382, 2008
[14] Chen X, Ghysels E. News-good or bad-and the impact on volatility predictions over multiple horizons. Review of Financial Studies, 2011, 24(1):46-81
[15] Ait-Sahalia Y, Fan J, Li Y. The leverage effect puzzle:Disentangling sources of bias at high frequency. J. Financial Economics, 2013, 109(1):224-249
[16] Black F. Noise. J. Finance, 1986, 41(3):528-543
[17] O'Hara M. Market microstucture theory. Oxford:Blackwell, 1995
[18] Madhavan A. Market microstructure:A survey. J. Financial Markets, 2000, 3(3):205-258
[19] Chaker S. Volatility and Liquidity Costs. Bank of Canada Working Paper, 2013-29
[20] Li Y, Xie S, Zheng X. Efficient Estimation of Integrated Volatility Incorporating Trading Information. J. Econometrics, 2016, 195(1):33-50
[21] Yan H, Zhou Y. Leverage effect in high-frequency data with market microstructure. Statistics and Its Interface, 2020, 13(1):91-101
[22] Delattre S, Jacod J. A Central Limit Theorem for Normalized Functions of the Increments of a Diffusion Process, in the Presence of Round-off Errors. Bernoulli, 1997, 3(1):1-28
[23] Li Y, Mykland P A. Rounding Errors and Volatility Estimation. J. Financial Econometrics, 2015, 13(2):478-504
[24] Li Y, Zhang Z, Li Y. A Unified Approach to Volatility Estimation in the Presence of Both Rounding and Random Market Microstructure Noise. J. Econometrics, 2018, 203(2):187-222
[25] Barndorff-Nielsen O E, Hansen P R, Lunde A, Shephard N. Designing Realized Kernels to Measure Ex-Post Variation of Equity Prices in the Presence of Noise. Econometrica, 2008, 76(6):1481-1536
[26] Heston S. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bonds and Currency Options. Review of Financial Studies, 1993, 6(2):327-343
[27] Ait-Sahalia Y, Jacod J. High-frequency financial econometrics. Princeton University Press, 2014

[1]黄金山, 陈敏. 基于高频数据的 GARCH 模型的伪极大指数似然估计[J]. 应用数学学报, 2014, 37(6): 1005-1017.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14855
相关话题/数据 统计 结构 上海 四川轻化工大学