删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于弱Hopf代数的半单范畴的构造

本站小编 Free考研考试/2021-12-27

基于弱Hopf代数的半单范畴的构造 张晓辉, 吴慧曲阜师范大学数学科学学院 曲阜 273165 Construction of Semisimple Categories over Weak Hopf Algebras Xiao Hui, ZHANG Hui WUSchool of Mathematical Science, Qufu Normal University, Qufu 273165, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(429 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究并刻画了交换环上弱Hopf代数Yetter-Drinfeld模范畴的一些性质,给出了其能够做成半单范畴的充分条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-04-27
MR (2010):O153.3
基金资助:国家自然科学基金资助项目(11801304,11801306,11871301);山东省自然科学基金资助项目(ZR2016AQ03);中国博士后面上基金资助项目(2018M630768)
作者简介: 张晓辉,E-mail:zxhhhhh@hotmail.com;吴慧,E-mail:wuhui8668@126.com
引用本文:
张晓辉, 吴慧. 基于弱Hopf代数的半单范畴的构造[J]. 数学学报, 2019, 62(3): 373-380. Xiao Hui, ZHANG Hui WU. Construction of Semisimple Categories over Weak Hopf Algebras. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 373-380.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I3/373


[1] Angiono I., Ardizzoni A., Menini C., Cohomology and coquasi-bialgebras in the category of Yetter-Drinfeld modules, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2017, 17:609-653.
[2] Böhm G., Doi-Hopf modules over weak Hopf algebras, Comm. Algebra, 2000, 28:4687-4698.
[3] Böhm G., Yetter-Drinfeld modules over weak multiplier bialgebras, Israel J. Math., 2015, 209:85-123.
[4] Böhm G., Nill F., Szlachányi K., Weak Hopf Algebras I, Integral Theory and C*-Structure, J. Algebra, 1999, 221:385-438.
[5] Caenepeel S., Wang D. G., Yin Y. M., Yetter-Drinfeld modules over weak bialgebras, Ann. Univ. FerraraSez. VⅡ-Sc. Mat., 2005, LI:69-98.
[6] Dai L., Dong J. C., On Kaplansky's sixth conjecture, Rend. Semin. Mat. Univ. Padova, 2016, 135:1-20.
[7] Dong J. C., Wang S. H., On semisimple Hopf algebras of dimension 2q3, J. Algebra, 2013, 375:97-108.
[8] Kassel C., Quantum Groups, Springer-Verlag, New York, 1995.
[9] Montgomery S., Hopf Algebras and Their Actions on Rings, CMBS Reg. Conf. Ser. in Math. 82, Am. Math. Soc., Providence, 1993.
[10] Nenciu A., The center constructions for weak Hopf algebras, Tsukaba J. Math., 2002, 26(1):189-204.
[11] Nikshych D., On the Structure of Weak Hopf Algebras, Adv. Math., 2002, 170(2):257-286.
[12] Nikshych D., Semisimple weak Hopf algebras, J. Algebra, 2004, 275(2):639-667.
[13] Nikshych D., Turaev V. G., Vainerman L., Invariants of knots and 3-manifolds from quantum groupoids, Topol. Appl., 2003, 127(1/2):91-123.
[14] Pfeiffer H., Tannaka-Kreîn reconstruction and a characterization of modular tensor categories, J. Algebra, 2009, 321(12):3714-3763.
[15] Wang S. X., Wang S. H., Hom-Lie algebras in Yetter-Drinfeld categories, Comm. Algebra, 2014, 42:4526-4547.
[16] Zhu H. X., Wang S. H., Chen J. Z., Bicovariant differential calculi on a weak Hopf algebra, Taiwanese J. Math., 2014, 18(6):1679-1712.

[1]贾玲;李方;. 弱Hopf代数上的几乎可裂序列[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 749-754.
[2]王志玺; 侯波. 弱Hopf代数作用与冲积[J]. Acta Mathematica Sinica, English Series, 2007, 50(1): 89-96.
[3]侯波;王志玺;. 量子代数wsl_q(2)上的伴随作用[J]. Acta Mathematica Sinica, English Series, 2006, 49(3): 651-656.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23396
相关话题/代数 数学 交换 序列 曲阜师范大学