删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

随机变量序列加权和的一般Davis-Gut律

本站小编 Free考研考试/2021-12-27

随机变量序列加权和的一般Davis-Gut律 李炜1, 陈平炎21 仲恺农业工程学院计算科学学院, 广州 510225;
2 暨南大学数学系, 广州 510630 Generalized Davis-Gut Law for Weighted Sums of Random Variables LI Wei1, Chen Pingyan21 College of Computation Science, (Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
2 Department of Mathematics, Jinan University, Guangzhou 510630, China
摘要
图/表
参考文献
相关文章(12)
点击分布统计
下载分布统计
-->

全文: PDF(285 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要本文获得了独立同分布随机变量序列加权和的一般Davis-Gut律,推广了已有的结果.本文所使用的主要工具是中心极限定理的非一致估计结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2016-03-18
PACS:60F05
60F15
基金资助:国家自然科学基金(No.61374067)资助项目.

引用本文:
李炜, 陈平炎. 随机变量序列加权和的一般Davis-Gut律[J]. 应用数学学报, 2021, 44(3): 418-426. LI Wei, Chen Pingyan. Generalized Davis-Gut Law for Weighted Sums of Random Variables. Acta Mathematicae Applicatae Sinica, 2021, 44(3): 418-426.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I3/418


[1] Hartman P, Wintner A. On the law of the iterated logarithm. Amer. J. Math., 1941, 63, 169–176
[2] Strassen V. A converse to the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete, 1966, 4: 265–268
[3] Davis J A. Convergence rates for the law of the iterated logarithm. Ann. Math. Statist., 1968, 39, 1479–1485
[4] Gut A. Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices. Ann. Probab., 1980, 8: 298–313
[5] Li D L. Convergence rates of law of iterated logarithm for B-valued random variables. Sci. China Ser. A, 1991, 34: 395–404
[6] Li D L, Wang X, Rao M B. Some results on convergence rates for probabilities of moderate deviations for sums of random variables. Internat. J. Math. Math. Sci., 1992, 15: 481–497
[7] Chen P, Wang D., 2008. Convergence rates for probabilities of moderate deviations for moving average processes. Acta Math. Sinica, English Series, 2008, 24: 611–622
[8] Li D L, Rosalsky A. A supplement to the Davis-Gut law. J. Math. Anal. Appl., 2007, 330: 1488–1493
[9] Liu X, Qian H, Cao L. The Davis-Gut law for moving average processes. Statist. Probab. Lett., 2015, 104: 1–6
[10] Cuzick J. A strong law for weighted sums of i.i.d. random variables. J. Theoret. Probab., 1995, 8: 625–641
[11] Bai Z D, Cheng P E. Marcinkiewicz strong laws for linear statistics. Statist. Probab. Lett., 2000, 46: 105–112
[12] Bai Z D, Cheng P E, Zhang C H. An extension of the Hardy-Littlewood strong law. Statist. Sinica 1997, 7: 923–928
[13] Chen P, Gan S. Limiting behavior of weighted sums of i.i.d. random variables. Statist. Probab. Lett., 2007, 77: 1589–1599
[14] 陈平炎. NA随机变量加权和的极限结果. 数学物理学报, 2005, 25A(4): 489-495(Chen P. Limiting Behavior of Weighted Sums of Negatively Associated Random Variables. Acta Mathematica Scientia, 2005, 25A(4): 489–495)
[15] 邱德华. ρ混合随机变量加权和的收敛性. 数学物理学报, 2011, 31A(1): 132-141(Qiu D. Convergence Properties for Weighted Sums of ρ e-mixing Random Variables. Acta Mathematica Scientia, 2011, 31A(1): 132–141)
[16] 林正炎, 陆传荣, 苏中根. 概率极限理论基础. 北京: 高等教育出版社, 1999(Lin Z, Lu C, Su Z. Foundations of Probability Limit Theory. Beijing: Higher Education Press, 1999)

[1]邱德华, 陈平炎, 肖娟. END随机变量序列加权和的矩完全收敛性[J]. 应用数学学报, 2017, 40(3): 436-448.
[2]邱德华, 陈平炎, 段振华. ρ混合随机变量序列加权和的完全收敛性[J]. 应用数学学报, 2015, 38(1): 150-165.
[3]郭永江, 黄军飞. 带有反馈机制的单服务台排队系统的泛函重对数律[J]. 应用数学学报(英文版), 2012, (4): 586-594.
[4] 蔡光辉, 吴航. $\rho$-混合序列加权和的完全收敛性[J]. 应用数学学报(英文版), 2005, 28(4): 622-628.
[5]苟列红. 左截断右删失数据下半参数模型风险率函数估计[J]. 应用数学学报(英文版), 2005, 28(4): 675-688.
[6]刘立新, 吴荣. NA随机变量列的有界重对数律[J]. 应用数学学报(英文版), 2003, 26(1): 125-132.
[7]Ding Cheng WANG, Chun SU, Jin Song LENG. NA序列广义Jamison型加权和的几乎处处收敛性[J]. 应用数学学报(英文版), 2002, 25(1): 77-87.
[8]胡舒合. 鞅差序列加权和的中心极限定理[J]. 应用数学学报(英文版), 2001, 24(4): 539-546.
[9]Han Ying LIANG, Chun SU, Tai Zhong HU. B值独立随机元重对数律收敛速度的一般形式[J]. 应用数学学报(英文版), 2000, 23(3): 457-465.
[10]周勇, 吴长凤. 随机左截断数据下乘积限估计的强逼近及其应用[J]. 应用数学学报(英文版), 1999, 22(4): 614-620.
[11]王岳宝. 不同分布NA列加权和的强极限定理及其在线性模型中的应用[J]. 应用数学学报(英文版), 1998, 21(4): 0-0.
[12]周勇, 安鸿志. 删失数据平滑非参数分位估计[J]. 应用数学学报(英文版), 1996, 19(1): 89-98.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14915
相关话题/应用数学 序列 数据 物理 统计