删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

I.I.D.序列最大部分和的精确渐近性

本站小编 Free考研考试/2021-12-27

I.I.D.序列最大部分和的精确渐近性 朱震, 赵月旭杭州电子科技大学经济学院, 杭州 310018 Precise Asymptotics for Maximal Partial Sums of I.I.D. Sequences ZHU Zhen, ZHAO YuexuCollege of Economics, Hangzhou Dianzi University, Hangzhou 310018, China
摘要
图/表
参考文献
相关文章(7)
点击分布统计
下载分布统计
-->

全文: PDF(272 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要借助于截尾技术和强逼近原理,本文研究了独立同分布(i.i.d.)序列最大部分和的精确渐近性,给出了更加一般的结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2015-05-26
PACS:O211.4
基金资助:国家自然科学基金(61771174)资助项目.

引用本文:
朱震, 赵月旭. I.I.D.序列最大部分和的精确渐近性[J]. 应用数学学报, 2018, 41(6): 822-831. ZHU Zhen, ZHAO Yuexu. Precise Asymptotics for Maximal Partial Sums of I.I.D. Sequences. Acta Mathematicae Applicatae Sinica, 2018, 41(6): 822-831.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I6/822


[1] Gut A, Spǎtaru A. Precise asymptotics in the Baum-Katz and Davis law of large numbers. Journal of Mathematical Analysis and Applications, 2000, 248(1):233-246
[2] Gut A, Spǎtaru A. Precise asymptotics in the law of the iterated logarithm. Annals of Probability, 2000, 28(4):1870-1883
[3] Heyde C C. A supplement to the strong law of large numbers. Journal of Applied Probability, 1975, 12(1):173-175
[4] Spǎtaru A. Precise asymptotics in Spitzer's law of large numbers. Journal of Theoretical Probability, 1999, 12(3):811-819
[5] Zhang L X. Precise rates in the law of the iterated logarithm. arXiv:math/0610519v1
[6] Zhao Y X. Precise asymptotics in the law of the iterated logarithm. Bulletin of the Brazilian Mathematical Society, 2006, 37(3):377-391
[7] 赵月旭. 非平稳NA序列部分和的精确渐近性. 数学学报, 2007, 50(3):539-546(Zhao Y X. Precise asymptotics for partial sums of nonstationary NA sequences. Acta Mathematica Sinica, 2007, 50(3):539-546)
[8] Lin Z Y, Lu C R. Limit Theory on Mixing Dependent Random Variables. Beijing:Science Press, 1997
[9] Csörgö M, Révész P. Strong Approximations in Probability and Statistics. New York:Academic Press, 1981
[10] Sakhanenko A I. On estimates of the rate of convergence in the invariance priciple. In:Advance in Probability Theory:Limit Theorems and Related Problems (A.A. Borovkov, Ed.), New York:Springer, 1984
[11] Billingsley P. Convergence of Probability Measures, Second Edition. New York:Wiley, 1999
[12] Feller W. The law of the iterated logarithm for identically distributed random variables. Annals of Mathematics, 1946, 47(4):631-638
[13] Einmahl U. The Darling-Erdös theorem for sums of i.i.d. random variables. Probabilty Theory and Related Fields, 1989, 82(2):241-257

[1]李永明, 周勇. 基于右删失宽相依数据的Kaplan-Meier估计和风险率估计的渐近性质[J]. 应用数学学报, 2019, 42(1): 71-84.
[2]郭永江, 黄军飞. 带有反馈机制的单服务台排队系统的泛函重对数律[J]. 应用数学学报(英文版), 2012, (4): 586-594.
[3]陈振龙, 徐赐文. N指标d维广义Wiener过程像集的一致维数[J]. 应用数学学报(英文版), 2003, 26(2): 345-358.
[4]刘立新, 吴荣. NA随机变量列的有界重对数律[J]. 应用数学学报(英文版), 2003, 26(1): 125-132.
[5]薛留根. 半参数回归模型中随机加权M估计的强逼近[J]. 应用数学学报(英文版), 2002, 25(4): 591-603.
[6]周勇, 吴长凤. 随机左截断数据下乘积限估计的强逼近及其应用[J]. 应用数学学报(英文版), 1999, 22(4): 614-620.
[7]沈照煊. 两参数Ornstein-Uhlenbeck过程的连续模[J]. 应用数学学报(英文版), 1996, 19(3): 445-456.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14555
相关话题/应用数学 序列 过程 数据 统计