删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

END随机变量序列加权和的矩完全收敛性

本站小编 Free考研考试/2021-12-27

END随机变量序列加权和的矩完全收敛性 邱德华1, 陈平炎2, 肖娟31. 广东财经大学数学与统计学院, 广州 510320;
2. 暨南大学数学系, 广州 510630;
3. 衡阳师范学院数学与统计学院, 衡阳 421002 Complete Moment Convergence for Sequences of END Random Variables QIU Dehua1, CHEN Pingyan2, XIAO Juan31. School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, China;
2. Department of Mathematics, Jinan University, Guangzhou 510630, China;
3. School of Mathematics and Statistics, Hengyang Normal University, Hengyang 421002, China
摘要
图/表
参考文献(0)
相关文章(6)
点击分布统计
下载分布统计
-->

全文: PDF(297 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用END列部分和的Rademacher-Menshov型矩不等式,得到了同分布END列加权和的最大值矩完全收敛性定理,推广和改进了已知的相应的一些结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2016-05-20
PACS:O211.4
基金资助:国家自然科学基金(11271161)资助项目.
引用本文:
邱德华, 陈平炎, 肖娟. END随机变量序列加权和的矩完全收敛性[J]. 应用数学学报, 2017, 40(3): 436-448. QIU Dehua, CHEN Pingyan, XIAO Juan. Complete Moment Convergence for Sequences of END Random Variables. Acta Mathematicae Applicatae Sinica, 2017, 40(3): 436-448.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I3/436


[1] Hsu P L, Robbins H. Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA, 1947, 33:25-31
[2] Chen P Y, Sung S H. On complete convergence for weighted sums of ρ*-mixing random variables. to appear
[3] 陈平炎. NA随机变量加权和的极限结果. 数学物理学报, 2005, 25A(4):489——495(Chen P Y. Limiting behavior of weighted sums of negatively associated random variables. Math. Acta Ainica, 2005, 25A(4):489-495)
[4] Sung S H. Complete convergence for weighted sums of ρ*-mixing random variables. Discrete Dyn. Nat. Soc., 2010, Article ID 630608(2010). Doi:10.1155/2010/630608
[5] 白志东, 苏淳. 关于独立和的完全收敛性. 中国科学数学, 1985, 15(5):399——412(Bai Z D, Su C. The complete convergence for partial sums of i.i.d. random variables. Science in China Series A-Mathematics, 1985, 15(5):399-412)
[6] Gut A. Complete convergence for arrays. Period. Math. Hung., 1992, 25:51-75
[7] Jing B Y, Liang H Y. Strong limit theorems for weighted sums of negatively associated random variables. J. Theor. Probab., 2008, 21:890-909
[8] Liang H Y, Wang L. Convergence rates in the law of large numbers for B-valued random elements. Acta Math. Sci. Ser. B Engl. Ed., 2001, 21:229-236
[9] Qiu D H, Chen P Y, Antonini R G, et al. On the complete convergence for arrays of rowwise extended negatively dependent random variables. J. Korean Math. Soc., 2013, 50(2):379-392
[10] Qiu D H, Wu Q Y, Chen P Y. Complete convergence for negatively orthant dependent random variables. J. Inequal. Appl., 2014, 2014:145
[11] Wang X J, Hu S H, Hu T C. Complete convergence for weighted sums and arrays of rowwise END sequences. Comm. Statist. Theory Methods, 2013, 42:2391-2401
[12] Wu Y F, Guan M. Convergence properties of the partial sums for sequences of END random variables. J. Korean Math. Soc., 2012, 49:1097-1110
[13] Wu Q Y. Sufficient and necessary conditions of complete convergence for Weighted Sums of PNQD random variables. J. Appl. Math., 2012, Volume 2012, Article ID 104390, 10 pages
[14] Zhang G H. Complete convergence for Sung's type weighted sums of END random variables. J. Inequal. Appl., 2014, 2014:353
[15] 张立新, 王江峰. 两两NQD列的完全收敛性的一个注记. 高校应用数学学报, 2004, 19(2):203——208(Zhang L X, Wang J F. A note on complete convergence of pairwise NQD random sequences. Appl. Math. J. Chinese Univ. Ser. A, 2004, 19(2):203-208)
[16] Chow Y S. On the rate of moment complete convergence of sample sums and extremes. Bull. Inst. Math. Acta. Sinica, 1988, 16:177-201
[17] Chen P Y, Wang D C. Complete moment convergence for sequence of identically distributed φ-mixing random variables. Acta Mathematica Sinica, English Series, 2010, 26(4):679-690
[18] Liang H Y, Li D L, Rosalsky A. Complete moment and integral convergence for sums of negatively associated random variables. Acta Mathematica Sinica, English Series, 2010, 26(3):419-432
[19] Qiu D H, Liu X D, Chen P Y. Complete moment convergence for maximal partial sums under NOD setup. J. Inequal. Appl., 2015, 2015:58
[20] Qiu D H, Chen P Y. Complete and complete moment convergence for weighted sums of widely orthant dependent random variables. Acta Mathematica Sinica, English Series, 2014, 30(9):1539-1548
[21] 王定成, 苏淳. B值独立同分布随机变元序列的矩完全收敛性. 应用数学学报, 2004, 27(3):440——448(Wang D C, Su C. Moment complete convergence for sequences of B-valued iid random elements. Acta Math. Appl. Sin., 2004, 27(3):440-448)
[22] Liu L. Precise large deviations for dependent random variables with heavy tails. Statist. Probab. Lett., 2009, 79(9):1290-1298
[23] Joag-Dev K, Proschan F. Negative association of random variables with applications. Ann. Statist., 1983, 11(1):286-295
[24] Liu L. Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails. Sci. China Math., 2010, 53(6):1421-1434
[25] Shen A T. Probability inequalities for END sequence and their applications. J. Inequal. Appl., 2011, 2011:98

[1]邱德华, 陈平炎, 段振华. ρ混合随机变量序列加权和的完全收敛性[J]. 应用数学学报, 2015, 38(1): 150-165.
[2] 蔡光辉, 吴航. $\rho$-混合序列加权和的完全收敛性[J]. 应用数学学报(英文版), 2005, 28(4): 622-628.
[3]王定成, 苏淳. B值独立同分布随机变元序列的矩完全收敛性[J]. 应用数学学报(英文版), 2004, 27(3): 440-448.
[4]Ding Cheng WANG, Chun SU, Jin Song LENG. NA序列广义Jamison型加权和的几乎处处收敛性[J]. 应用数学学报(英文版), 2002, 25(1): 77-87.
[5]胡舒合. 鞅差序列加权和的中心极限定理[J]. 应用数学学报(英文版), 2001, 24(4): 539-546.
[6]王岳宝. 不同分布NA列加权和的强极限定理及其在线性模型中的应用[J]. 应用数学学报(英文版), 1998, 21(4): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14337
相关话题/应用数学 序列 数学 广州 统计