删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

平稳强相依高斯过程之上穿点过程的极限定理

本站小编 Free考研考试/2021-12-27

平稳强相依高斯过程之上穿点过程的极限定理 谭中权嘉兴学院数理信息工程学院, 嘉兴 314001 The Limit Theorems of Upcrossing Point Processes of Stationary Strongly Dependent Gaussian Process TAN Zhong-quanCollege of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China
摘要
图/表
参考文献(0)
相关文章(8)
点击分布统计
下载分布统计
-->

全文: PDF(289 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要设{X(t),t≥0}是一列标准化的具有连续样本轨道的强相依平稳高斯过程,其相关系数函数为r(t).当r(t)满足一定条件时,证明了高斯过程{X(t),t≥0}上穿和ε-上穿水平u形成的点过程的依分布收敛到一Cox-过程.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2013-03-01
PACS:O211.4
基金资助:国家自然科学基金(No.11501250),浙江省自然科学基金(No.Q14A010012,LY15A010019)资助项目.
引用本文:
谭中权. 平稳强相依高斯过程之上穿点过程的极限定理[J]. 应用数学学报, 2016, 39(3): 351-361. TAN Zhong-quan. The Limit Theorems of Upcrossing Point Processes of Stationary Strongly Dependent Gaussian Process. Acta Mathematicae Applicatae Sinica, 2016, 39(3): 351-361.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I3/351


[1] Leadbetter M R,Lindgrem G,Rootzen H.Extremes and Related Properties of Random Sequences and Processes.New York:Springer-Verlag,1983
[2] Piterbarg V I.Asymptotic Methods in the Theory of Gaussian Processes and Fields.AMS,Providence,1996
[3] Peng Z.Asymptotic distributions of upcrossing point processes formed by a class of vector Gaussian processes.Acta Math.Appl.Sin.(Chinese Series),1996,19(2):290-296
[4] Hüsler J.Extreme values and high boundary crossings for locally stationary Gaussian processes.Ann.Probab.,1990,18(3):1141-1158
[5] Azaïs J M,Mercadier C.Asymptotic Poisson character of extremes in non-stationary Gaussian models.Extremes,2003,6(2):301-318
[6] Yang C,Peng Z.Asymptotic distribution of point process formed by the uprcossings of non-stationary differentiable Guassian Process.Acta Math.Appl.Sin.,(Chinese Series),2006,29(5):848-855
[7] Zhang L.Weak convergence of high level exceedance by a nonstationary Guassian sequence with strong dependence.Acta Math.Appl.Sin.,(Chinese Series),2003,26(1):57-61
[8] Tong J,Peng Z.Asymptotic distributions of the exceedances point processes for a class of dependent normal sequence.Acta Math.Appl.Sin.(Chinese Series),2010,33(6):1078-1086
[9] Tan Z,Peng Z.Joint asymptotic distributions of exceedance point process and partial sum of non-stationary strongly dependent Gaussian sequences.Acta Math.Appl.Sin.(Chinese Series),2011,34(1):24-32
[10] Tan Z,Peng Z.Joint asymptotic distribution of exceedances point process and partial sum of stationary Gaussian sequence.Applied Mathematics-a Journal of Chinese Universities,Series B,2011,26(3):319-326
[11] Mittal Y,Ylvisaker D.Limit distribution for the maximum of stationary Gaussian processes.Stoch.Proc.Appl.,1975,3(1):1-18
[12] Tan Z,Hashorva E,Peng Z.Asymptotics of maxima of strongly dependent Gaussian processes.J.Appl.Probab.,2012,49(4):1106-1118

[1]谭中权. 离散与连续时间强相依高斯过程最大值与和的渐近关系[J]. 应用数学学报, 2015, 38(1): 27-36.
[2]谭中权, 彭作祥. 强相依非平稳高斯序列超过数点过程与部分和的联合渐近分布[J]. 应用数学学报(英文版), 2011, 34(1): 24-32.
[3]张日权. 强相依数据的函数系数部分线性模型的估计[J]. 应用数学学报(英文版), 2006, 29(2): 374-381.
[4]张玲. 强相依高斯序列的最大值与和的联合渐近分布[J]. 应用数学学报(英文版), 2006, 29(1): 111-115.
[5]张玲. 强相依高斯序列对高水平超过的弱收敛[J]. 应用数学学报(英文版), 2003, 26(1): 56-61.
[6]彭作祥. 强相依高斯序列超过数点过程与部分和的联合渐近分布[J]. 应用数学学报(英文版), 1999, 22(3): 362-367.
[7]彭作祥. 一类向量高斯过程之上穿过点过程的渐近分布[J]. 应用数学学报(英文版), 1996, 19(2): 290-296.
[8]秦更生. k-近邻回归估计的泛函中心极限定理[J]. 应用数学学报(英文版), 1995, 18(4): 559-566.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14156
相关话题/过程 应用数学 序列 统计 数理