删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

混合约束Minimax问题的基于序列线性方程组的模松弛SQP算法

本站小编 Free考研考试/2021-12-27

混合约束Minimax问题的基于序列线性方程组的模松弛SQP算法 王福胜1, 高娟2, 赵媛璐3, 姜合峰31. 太原师范学院数学系, 晋中 030619;
2. 河北工业大学控制科学与工程学院, 天津 300401;
3. 太原师范学院数学系, 晋中 030619 A Norm-relaxed SQP Algorithm with a System of Linear Equations for Constrained Minimax Problems WANG Fusheng1, GAO Juan2, ZHAO Yuanlu3, JIANG Hefeng31. Department of Mathematics, Taiyuan Normal University, Jinzhong 030619, China;
2. School of Control Science and Engineering, Hebei University of Technology, Tianjin 300401, China;
3. Department of Mathematics, Taiyuan Normal University, Jinzhong 030619, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(422 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文针对带等式与不等式的混合约束Minimax问题,提出了基于序列线性方程组的模松弛SQP算法.在新算法中,我们首先引入了ε-积极约束集,在此基础上构造了一个模松弛QP子问题和序列线性方程组,以获得可行下降方向.另外,新算法采取了一种既无罚函数又无滤子的弧搜索步长策略,以避免罚参数的选取.新算法既克服了Maratos效应,又大大地减少了算法的计算工作量和储存量.在适当的假设条件下,证明了算法的全局收敛性.初步数值实验验证了该算法的有效性与优越性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-03-14
PACS:O221.2
基金资助:国家自然科学基金(11171250),山西省回国留学人员科研资助项目(2017-104)资助项目.

引用本文:
王福胜, 高娟, 赵媛璐, 姜合峰. 混合约束Minimax问题的基于序列线性方程组的模松弛SQP算法[J]. 应用数学学报, 2019, 42(2): 242-253. WANG Fusheng, GAO Juan, ZHAO Yuanlu, JIANG Hefeng. A Norm-relaxed SQP Algorithm with a System of Linear Equations for Constrained Minimax Problems. Acta Mathematicae Applicatae Sinica, 2019, 42(2): 242-253.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I2/242


[1] Rustem B, Nguyen Q. An algorithm for the inequality-constrained discrete minimax problem. SIAM Journal on Optimization, 1998, 8:265-283
[2] Yu Y H, Gao L. Nonmonotone line search for constrained minimax problems. Journal of Optimization Theory and Applications, 2002, 115:419-446
[3] Coleman T F. A note on new algorithms for constrained minimax optimization. Mathematical Programmmming, 1978, 15:239-242
[4] Polak E, Royset J O, and Womersley R S. Algorithms with Adaptive Smoothing for Finite Minimax Problems. Journal of Optimization Theory and Applications, 2003, 119(3):459-484
[5] Di Pillo G, Grippo L, Lucidi S. A smooth method for the finite minimax problem. Mathematical Programmmming, 1993, 60:187-214
[6] 简金宝. 光滑约束优化快速算法-理论分析与数值试验. 北京:科学出版社, 2010(Jian, J B. Fast Algorithms for Smooth Constrained Optimization-Theoretical Analysis and Numerical Experiments. Beijing:Science Press, 2010)
[7] Tang C M, Jian J B. Sequential Quadratically Constrained Quadratic Programming Method with an Augmented Lagrangian Line Search Function. Journal of Computational and Applied Mathematics, 2008, 220(1-2):525-547
[8] 薛毅. 求解Minimax优化问题的SQP方法. 系统科学与数学, 2002, 22(3):355-364(Xue Y. The Sequential Quadratic Programming Method for Solving Minimax Problem. Journal of Systems Science and Mathematical Sciences, 2002, 22(3):355-364)
[9] Wang F S. A hybrid algorithm for linearly constrained minimax Problems. Annals of Operations Research, 2013, 206(1):501-525
[10] He S X, Liu X F, Wang C M. A Nonlinear Lagrange Algorithm for Minimax Problems with General Constraints. Numerical Functional Analysis and Optimization, 2016, 37(6):680-698
[11] 刘美杏,唐春明,简金宝. 不等式约束优化基于新型积极识别集的SQCQP算法. 应用数学学报, 2015, 38(2):222-234(Liu M X, Tang C M, Jian J B. An SQCQP Algorithm with new active identification set for inequality constrained optimization. Acta Mathematicae Applicatae Sinica, 2015, 38(2):222-234)
[12] Panier E R, Tits A L, Herskovits J N. A QP-free globally convergent locally superlinearly convergent algorithm for inequality constrained optimization. SIAM Journal on Control and Optimization, 1988, 26(4):788-811
[13] Zhu Z B, Cai X, Jian J B. An improved SQP algorithm for solving minimax problems. Applied Mathematics Letter, 2009, 22:464-469
[14] Jian J B, Ma R Q, Zhang X L. Feasible generalized monotone line search SQP algorithm for nonlinear minimax problems with inequality constraints. Journal of Computational and Applied Mathematics, 2007, 205:406-429
[15] Jian J B, Li J, Zheng H Y, Li J L. A superlinearly convergent norm-relaxed method of quasi-strongly sub-feasible direction for inequality constrained minimax problems. Applied Mathematics and Computation, 2014, 226:673-690
[16] Jian J B, Zhang X L, Ma R Q. Generalized monotone line search SQP algorithm for constrained minimax problems. Optimization, 2009, 58(1):101-131
[17] Wang L R, Luo Z J. A Simple SQP Algorithm for Constrained Finite Minimax Problems. The Science World Journal, 2014(2014), Article ID 159754, 9 pages.
[18] 谢亚军,马昌凤. 约束Minimax问题的SQP-Filter算法及收敛性. 西华大学学报, 2011, 30(6):62-64(Xie Y J, Ma C F. SQP-Filter Algorithm for Constrained Minimax Problem and Its Convergence. Journal of Xihua University(Natural Science Edition), 2011, 30(6):62-64)
[19] Luo Z J, Wang L R. Improved Filter-SQP Algorithm with Active Set for Constrained Minimax Problems. Journal of Applied Mathematics, 2014(2014), Article ID 293475, 7 pages.
[20] Liu X W, Yuan Y X. A Sequential Quadratic Programming Method Without A Penalty Function Or A Filter For Nonlinear Equality Constrained Optimization. SIAM Journal On Optimization, 2011, 21(2):545-571

[1]何道江, 盛玮芮, 方龙祥. 带有测量误差的Wiener退化模型的客观Bayes分析[J]. 应用数学学报, 2019, 42(4): 506-517.
[2]张明会, 韩鑫. 一类带平行机的两阶段柔性流水调度近似算法[J]. 应用数学学报, 2018, 41(3): 420-432.
[3]刘志敏, 杜守强, 王瑞莹. 求解线性互补问题的Levenberg-Marquardt型算法[J]. 应用数学学报, 2018, 41(3): 403-419.
[4]李明强, 韩丛英, 郭田德. 新的梯度算法求解单位球笛卡尔积约束优化问题[J]. 应用数学学报, 2018, 41(1): 43-54.
[5]刘金魁, 张春涛. 三项修正LS共轭梯度方法及其收敛性研究[J]. 应用数学学报, 2017, 40(6): 862-873.
[6]陈荣军, 唐国春. 具有分包功能的同类机排序[J]. 应用数学学报, 2017, 40(6): 801-808.
[7]张艳君, 赵金玲, 徐尔. 求解多集分裂可行问题的一种新的松弛投影算法[J]. 应用数学学报, 2017, 40(5): 641-652.
[8]徐平峰, 王福友, 邓文礼, 马文卿, 董小刚. 基于图分解的最优三角化图及连接树的构建[J]. 应用数学学报, 2017, 40(4): 594-611.
[9]王侃, 丁佳, 王超. 树的彩虹控制数的一个多项式时间算法[J]. 应用数学学报, 2017, 40(1): 66-72.
[10]洪志敏, 陈雪, 李强. 求解电报方程的自适应重要性抽样蒙特卡罗算法[J]. 应用数学学报, 2016, 39(6): 859-870.
[11]邵嘉婷, 徐大川, 王凤敏. 方度量的k层设施选址问题的近似算法[J]. 应用数学学报, 2016, 39(4): 586-597.
[12]张凯院, 耿小姣, 聂玉峰. 参量离散代数oneRiccati方程centerline对称解的两类迭代算法[J]. 应用数学学报, 2016, 39(3): 429-440.
[13]董晓亮, 何郁波. 一类满足充分下降条件和自适应共轭性的修正THREECG方法[J]. 应用数学学报, 2016, 39(1): 58-70.
[14]梅海娇, 张子龙, 陶跃钢. 极大加代数矩阵的整特征向量[J]. 应用数学学报, 2015, 38(6): 1086-1096.
[15]罗平, 李树有. 三个多元正态总体在简单半序约束下均值估计-基于协方差阵未知[J]. 应用数学学报, 2015, 38(6): 1136-1141.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14606
相关话题/应用数学 序列 优化 代数 统计