删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非凸集值优化问题E-Benson真有效元的最优性条件

本站小编 Free考研考试/2021-12-27

非凸集值优化问题E-Benson真有效元的最优性条件 吴唯钿1, 仇秋生1, 田伟福21. 浙江师范大学数学系, 金华 321004;
2. 浙江师范大学计划财务处, 金华 321004 The Optimality Conditions of E-Benson Proper Efficient Element for Nonconvex Set-valued Optimization Problems Wu weitian1, Qiu Qiusheng1, Tian weifu21. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;
2. Office of Budget and Finance, Zhejiang Normal University, Jinhua 321004, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(309 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文首先给出了集合为近似E-次类凸的等价刻画.其次,分别在锥具有紧基和弱紧基的条件下,获得了近似E-次类凸集值优化问题的E-Benson真有效元的Lagrange乘子定理.作为应用,获得了集值优化问题Benson真有效元的Lagrange乘子定理.最后,给出了集值优化问题E-鞍点的充分条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-12-29
PACS:O221.6
基金资助:国家自然科学基金(11471291)资助项目.

引用本文:
吴唯钿, 仇秋生, 田伟福. 非凸集值优化问题E-Benson真有效元的最优性条件[J]. 应用数学学报, 2018, 41(5): 620-631. Wu weitian, Qiu Qiusheng, Tian weifu. The Optimality Conditions of E-Benson Proper Efficient Element for Nonconvex Set-valued Optimization Problems. Acta Mathematicae Applicatae Sinica, 2018, 41(5): 620-631.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I5/620


[1] Geoffrion A M. Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 1968, 22(3):618-630
[2] Borwein J M. Proper efficient points for maximizations with respect to cones. SIAM Journal on Control and Optimization, 1977, 15(1):57-63
[3] Benson H P. An improved definition of proper efficiency for vector maximization with respect to cones. Journal of Mathematical Analysis and Applications, 1983, 71(1):232-241
[4] Henig M I. Proper efficiency with respect to cones. Journal of Optimization Theory and Applications, 1982, 36(3):387-407
[5] Chicco M, Mignanego F, Pusillo L, Tijs S. Vector optimization problems via improvement sets. Journal of Optimization Theory and Applications, 2011, 150(3):516-529
[6] Gutiérrez C, Jiménez B, Novo V. Improvement sets and vector optimization. European Journal of Operational Research, 2012, 223(2):304-311
[7] Zhao K Q, Yang X M, Peng J W. Weak E-optimal solution in vector optimization. Taiwanese Journal of Mathematics, 2013, 17(4):1287-1302
[8] Zhao K Q, Yang X M. E-Benson proper efficiency in vector optimization. Optimization, 2013, 64(8):739-752
[9] Chen G Y, Rong W D. Characterizations of the Benson proper efficiency for nonconvex vector optimization. Journal of Optimization Theory and Applications, 1998, 98(2):365-384
[10] Sach P H. Nearly subconvexlike set-valued maps and vector optimization problems. Journal of Optimization Theory and Applications, 2003, 119(2):335-356
[11] Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions. Journal of Optimization Theory and Applications, 2001, 110(2):413-427
[12] Dauer J P, Saleh O A. A characterization of proper minimal points as solutions of sublinear optimization problems. Journal of Mathematical Analysis and Applications, 1987, 178(1):227-246

[1]徐义红, 刘三阳. $(h,\varphi)$不变广义凸函数的若干性质与$(h,\varphi)$不变广义凸多目标规划的最优性及对偶性[J]. 应用数学学报(英文版), 2003, 26(4): 726-736.
[2]刘三阳, 盛宝怀. 非凸向量集值优化Benson真有效解的最优性条件与对偶[J]. 应用数学学报(英文版), 2003, 26(2): 337-344.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14538
相关话题/优化 应用数学 浙江师范大学 统计 规划