删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非光滑半无限多目标优化问题的Lagrange鞍点准则

本站小编 Free考研考试/2021-12-27

非光滑半无限多目标优化问题的Lagrange鞍点准则 杨玉红1,21. 内蒙古大学数学科学学院, 呼和浩特 010021;
2. 长江师范学院数学与统计学院, 重庆 408100 Lagrange Saddle Point Criteria for Nonsmooth Semi-infinite Multiobjective Optimization Problems YANG Yuhong1,21. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China;
2. School of Mathematics and Statistics, Yangtze Normal University, Chongqing 408100, China
摘要
图/表
参考文献
相关文章(11)
点击分布统计
下载分布统计
-->

全文: PDF(359 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类非光滑半无限多目标优化问题,并讨论它的鞍点准则.首先,定义了这类半无限多目标优化问题的标量和向量情形的Lagrange函数和鞍点;其次,分别讨论了标量和向量情形的鞍点准则的必要性;最后,在非光滑(Φ,ρ)-不变凸性假设下给出这两种情形的鞍点准则的充分性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-04-10
PACS:O221.6
基金资助:国家自然科学基金(11431004),国家自然科学基金数学天元青年(11626048),重庆市科委(cstc2016jcyjA0178)资助项目.
引用本文:
杨玉红. 非光滑半无限多目标优化问题的Lagrange鞍点准则[J]. 应用数学学报, 2018, 41(1): 14-26. YANG Yuhong. Lagrange Saddle Point Criteria for Nonsmooth Semi-infinite Multiobjective Optimization Problems. Acta Mathematicae Applicatae Sinica, 2018, 41(1): 14-26.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I1/14


[1] Ehrgott M. Multicriteria Optimization (2nd edn.). Berlin:Springer, 2005
[2] Jahn J. Vector Optimization:Theory, Applications, and Extensions (2nd edn.). Berlin:SpringerVerlag, 2011
[3] 戎卫东, 杨新民. 向量优化及其若干进展. 运筹学学报, 2014, 18(1):9-38(Rong W D, Yang X M. Vector optimization and its developments. Operations Research Transactions, 2014, 18(1):9-38)
[4] Goberna M A, López M A. Linear Semi-infinite Optimization. Chichester:John Wiley & Sons, 1998
[5] Reemtsen R, Rückmann J -J. Semi-infinite Programming. Dordrecht:Springer Science+Business Media, 1998
[6] López M A, Still G. Semi-infinite programming. European Journal of Operational Research, 2007, 180(2):491-518
[7] Caristi G, Ferrara M, Ştefănescu A. Semi-infinite multiobjective programming with generalized invexity. Mathematical Reports, 2010, 12(62):217-233
[8] Caristi G, Kanzi N. Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming. International Journal of Mathematical Analysis, 2015, 9(39):1929-1938
[9] Chuong T D, Kim D S. Nonsmooth semi-infinite multiobjective optimization problems. Journal of Optimization Theory and Applications, 2014, 160(3):748-762
[10] Chuong T D, Yao J -C. Isolated and proper efficiencies in semi-infinite vector optimization problems. Journal of Optimization Theory and Applications, 2014, 162(2):447-462
[11] Goberna M A, Kanzi N. Optimality conditions in convex multiobjective SIP. Mathematical Programming, Ser. A, 2017, 164:167-191
[12] Jaiswal M, Mishra S K, Shamary B A. Optimality conditions and duality for semi-infinite programming involving semilocally type I-preinvex and related functions. Communications of the Korean Mathematical Society, 2012, 27(2):411-423
[13] Kanzi N, Nobakhtian S. Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optimization Letters, 2014, 8(4):1517-1528
[14] Kanzi N. On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optimization Letters, 2015, 9(6):1121-1129
[15] Kanzi N. Karush-Kuhn-Tucker Types optimality conditions for non-smooth semi-infinite vector optimization problems. Journal of Mathematical Extension, 2015, 9(4):45-56
[16] Piao G R, Jiao L G, Kim D S. Optimality conditions in nonconvex semi-infinite multiobjective optimization. Journal of Nonlinear and Convex Analysis, 2016, 17(1):167-175
[17] Antczak T. Saddle point criteria and Wolfe duality in nonsmooth (Φ,ρ)-invex vector optimization problems with inequality and equality constraints. International Journal of Computer Mathematics, 2015, 92(5):882-907
[18] Clarke F H. Optimization and Nonsmooth Analysis. Philadelphia:SIAM, 1990
[19] Hanson M A. On sufficiency of the Kuhn-Tucher conditions. Journal of Mathematical Analysis and Applications, 1981, 80(2):545-550
[20] Hanson M A, Mond B. Further generalization of convexity in mathematical programming. Journal of Information and Optimization Sciences, 1982, 3(1):25-32
[21] Yang X M, Li D. On properties of preinvex functions. Journal of Mathematical Analysis and Applications, 2001, 256(1):229-241
[22] Yang X M, Yang X Q, Teo K L. Generalized invexity and generalized invariant monotonicity. Journal of Optimization Theory and Applications, 2003, 117(3):607-625
[23] Antczak T. A class of B-(p,r)-invex functions and mathematical programming. Journal of Mathematical Analysis and Applications, 2003, 286(1):187-206
[24] Caristi G, Ferrara M, Ştefănescu A. Mathematical programming with (Φ,ρ)-invexity. In:Generalized Convexity and Related Topics, Konnov I V, Luc D T, and Rubinov A M (eds.), Lecture Notes in Economics and Mathematical Systems, Vol. 583, Springer-Verlag, Berlin, 2006, 167-176
[25] Antczak T, Stasiak A. (Φ,ρ)-invexity in nonsmooth optimization. Numerical Functional Analysis and Optimization, 2011, 32(1):1-25
[26] 彭再云, 秦南南, 李科科. G-E-半预不变凸型多目标规划的Wolfe型对偶. 应用数学学报, 2015, 38(6):1103-1114(Peng Z Y, Qin N N, Li K K. Wolf type duality of G-E-semi-preinvex type multiobjective programming problems. Acta Mathematicae Applicatae Sinica, 2015, 38(6):1103-1114)
[27] 唐莉萍, 杨新民. 关于D-半预不变凸性的某些新性质. 应用数学和力学, 2015, 36(3):325-331(Tang L P,Yang X M. A note on some new characteristics of D-Semi-Preinvexity. Applied Mathematics and Mechanics, 2015, 36(3):325-331)
[28] Khan M A. Optimality conditions and duality for nonsmooth minimax programming problems under generalized invexity. Filomat, 2016, 30(5):1253-1261
[29] Goberna M A, Guerra-Vazquez F, Todorov M I. Constraint qualifications in convex vector semi-infinite optimization. European Journal of Operational Research, 2016, 249(1):32-40

[1]傅俊义, 王三华. 集值映射的对称向量拟均衡问题[J]. 应用数学学报(英文版), 2011, 34(1): 40-49.
[2]高英. 多目标优化 ε-拟弱有效解的最优性条件[J]. 应用数学学报(英文版), 2010, 33(6): 1061-1071.
[3]彭拯, 邬冬华. 一种求解非线性鞍点问题的交替投影方法[J]. 应用数学学报(英文版), 2010, 33(5): 930-941.
[4]彭拯, 邬冬华. 一种求解非线性鞍点问题的交替投影方法[J]. 应用数学学报(英文版), 2010, 33(1): 930-941.
[5]董岩、李国英. 基于指数分布不同定时截尾数据的可靠度的置信下限[J]. 应用数学学报(英文版), 2006, 29(1): 61-67.
[6]刘颖范. 关于一类广义 Leontief 条件投入产出不等式的一些结果[J]. 应用数学学报(英文版), 2005, 28(3): 506-516.
[7]田玉斌, 李国英, 张英. Logistic响应分布中刻度参数的中、小样本推断[J]. 应用数学学报(英文版), 2004, 27(2): 254-264.
[8]刘一戎, 陈海波. 奇点量公式的机器推导与一类三次系统的前10个鞍点量[J]. 应用数学学报(英文版), 2002, 25(2): 295-302.
[9]凌晨. 拓扑向量空间中锥拟凸多目标规划锥有效解集的连通性[J]. 应用数学学报(英文版), 2001, 24(1): 66-070.
[10]韩玉良. 一类三次系统的细奇点[J]. 应用数学学报(英文版), 1999, 22(2): 256-260.
[11]程曹宗. 一个抽象的Kuhn-Tucker定理[J]. 应用数学学报(英文版), 1998, 21(2): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14437
相关话题/应用数学 优化 数学 统计 系统