摘要本文研究了一类非光滑半无限多目标优化问题,并讨论它的鞍点准则.首先,定义了这类半无限多目标优化问题的标量和向量情形的Lagrange函数和鞍点;其次,分别讨论了标量和向量情形的鞍点准则的必要性;最后,在非光滑(Φ,ρ)-不变凸性假设下给出这两种情形的鞍点准则的充分性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2017-04-10 | | 基金资助:国家自然科学基金(11431004),国家自然科学基金数学天元青年(11626048),重庆市科委(cstc2016jcyjA0178)资助项目. |
[1] | Ehrgott M. Multicriteria Optimization (2nd edn.). Berlin:Springer, 2005 | [2] | Jahn J. Vector Optimization:Theory, Applications, and Extensions (2nd edn.). Berlin:SpringerVerlag, 2011 | [3] | 戎卫东, 杨新民. 向量优化及其若干进展. 运筹学学报, 2014, 18(1):9-38(Rong W D, Yang X M. Vector optimization and its developments. Operations Research Transactions, 2014, 18(1):9-38) | [4] | Goberna M A, López M A. Linear Semi-infinite Optimization. Chichester:John Wiley & Sons, 1998 | [5] | Reemtsen R, Rückmann J -J. Semi-infinite Programming. Dordrecht:Springer Science+Business Media, 1998 | [6] | López M A, Still G. Semi-infinite programming. European Journal of Operational Research, 2007, 180(2):491-518 | [7] | Caristi G, Ferrara M, Ştefănescu A. Semi-infinite multiobjective programming with generalized invexity. Mathematical Reports, 2010, 12(62):217-233 | [8] | Caristi G, Kanzi N. Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming. International Journal of Mathematical Analysis, 2015, 9(39):1929-1938 | [9] | Chuong T D, Kim D S. Nonsmooth semi-infinite multiobjective optimization problems. Journal of Optimization Theory and Applications, 2014, 160(3):748-762 | [10] | Chuong T D, Yao J -C. Isolated and proper efficiencies in semi-infinite vector optimization problems. Journal of Optimization Theory and Applications, 2014, 162(2):447-462 | [11] | Goberna M A, Kanzi N. Optimality conditions in convex multiobjective SIP. Mathematical Programming, Ser. A, 2017, 164:167-191 | [12] | Jaiswal M, Mishra S K, Shamary B A. Optimality conditions and duality for semi-infinite programming involving semilocally type I-preinvex and related functions. Communications of the Korean Mathematical Society, 2012, 27(2):411-423 | [13] | Kanzi N, Nobakhtian S. Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optimization Letters, 2014, 8(4):1517-1528 | [14] | Kanzi N. On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optimization Letters, 2015, 9(6):1121-1129 | [15] | Kanzi N. Karush-Kuhn-Tucker Types optimality conditions for non-smooth semi-infinite vector optimization problems. Journal of Mathematical Extension, 2015, 9(4):45-56 | [16] | Piao G R, Jiao L G, Kim D S. Optimality conditions in nonconvex semi-infinite multiobjective optimization. Journal of Nonlinear and Convex Analysis, 2016, 17(1):167-175 | [17] | Antczak T. Saddle point criteria and Wolfe duality in nonsmooth (Φ,ρ)-invex vector optimization problems with inequality and equality constraints. International Journal of Computer Mathematics, 2015, 92(5):882-907 | [18] | Clarke F H. Optimization and Nonsmooth Analysis. Philadelphia:SIAM, 1990 | [19] | Hanson M A. On sufficiency of the Kuhn-Tucher conditions. Journal of Mathematical Analysis and Applications, 1981, 80(2):545-550 | [20] | Hanson M A, Mond B. Further generalization of convexity in mathematical programming. Journal of Information and Optimization Sciences, 1982, 3(1):25-32 | [21] | Yang X M, Li D. On properties of preinvex functions. Journal of Mathematical Analysis and Applications, 2001, 256(1):229-241 | [22] | Yang X M, Yang X Q, Teo K L. Generalized invexity and generalized invariant monotonicity. Journal of Optimization Theory and Applications, 2003, 117(3):607-625 | [23] | Antczak T. A class of B-(p,r)-invex functions and mathematical programming. Journal of Mathematical Analysis and Applications, 2003, 286(1):187-206 | [24] | Caristi G, Ferrara M, Ştefănescu A. Mathematical programming with (Φ,ρ)-invexity. In:Generalized Convexity and Related Topics, Konnov I V, Luc D T, and Rubinov A M (eds.), Lecture Notes in Economics and Mathematical Systems, Vol. 583, Springer-Verlag, Berlin, 2006, 167-176 | [25] | Antczak T, Stasiak A. (Φ,ρ)-invexity in nonsmooth optimization. Numerical Functional Analysis and Optimization, 2011, 32(1):1-25 | [26] | 彭再云, 秦南南, 李科科. G-E-半预不变凸型多目标规划的Wolfe型对偶. 应用数学学报, 2015, 38(6):1103-1114(Peng Z Y, Qin N N, Li K K. Wolf type duality of G-E-semi-preinvex type multiobjective programming problems. Acta Mathematicae Applicatae Sinica, 2015, 38(6):1103-1114) | [27] | 唐莉萍, 杨新民. 关于D-半预不变凸性的某些新性质. 应用数学和力学, 2015, 36(3):325-331(Tang L P,Yang X M. A note on some new characteristics of D-Semi-Preinvexity. Applied Mathematics and Mechanics, 2015, 36(3):325-331) | [28] | Khan M A. Optimality conditions and duality for nonsmooth minimax programming problems under generalized invexity. Filomat, 2016, 30(5):1253-1261 | [29] | Goberna M A, Guerra-Vazquez F, Todorov M I. Constraint qualifications in convex vector semi-infinite optimization. European Journal of Operational Research, 2016, 249(1):32-40 |
[1] | 傅俊义, 王三华. 集值映射的对称向量拟均衡问题[J]. 应用数学学报(英文版), 2011, 34(1): 40-49. | [2] | 高英. 多目标优化 ε-拟弱有效解的最优性条件[J]. 应用数学学报(英文版), 2010, 33(6): 1061-1071. | [3] | 彭拯, 邬冬华. 一种求解非线性鞍点问题的交替投影方法[J]. 应用数学学报(英文版), 2010, 33(5): 930-941. | [4] | 彭拯, 邬冬华. 一种求解非线性鞍点问题的交替投影方法[J]. 应用数学学报(英文版), 2010, 33(1): 930-941. | [5] | 董岩、李国英. 基于指数分布不同定时截尾数据的可靠度的置信下限[J]. 应用数学学报(英文版), 2006, 29(1): 61-67. | [6] | 刘颖范. 关于一类广义 Leontief 条件投入产出不等式的一些结果[J]. 应用数学学报(英文版), 2005, 28(3): 506-516. | [7] | 田玉斌, 李国英, 张英. Logistic响应分布中刻度参数的中、小样本推断[J]. 应用数学学报(英文版), 2004, 27(2): 254-264. | [8] | 刘一戎, 陈海波. 奇点量公式的机器推导与一类三次系统的前10个鞍点量[J]. 应用数学学报(英文版), 2002, 25(2): 295-302. | [9] | 凌晨. 拓扑向量空间中锥拟凸多目标规划锥有效解集的连通性[J]. 应用数学学报(英文版), 2001, 24(1): 66-070. | [10] | 韩玉良. 一类三次系统的细奇点[J]. 应用数学学报(英文版), 1999, 22(2): 256-260. | [11] | 程曹宗. 一个抽象的Kuhn-Tucker定理[J]. 应用数学学报(英文版), 1998, 21(2): 0-0. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14437
新的梯度算法求解单位球笛卡尔积约束优化问题李明强1,2,韩丛英2,3,郭田德2,31.中国电子科技集团公司信息科学研究院,北京100086;2.中国科学院大学数学科学学院,北京100049;3.中国科学院大数据挖掘与知识管理重点实验室,北京100190NewGradientAlgorithmsfor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析王虎1,田晶磊2,孙玉琴3,于永光11.中央财经大学统计与数学学院,北京100081;2.北京交通大学理学院,北京100044;3.内蒙古大学鄂尔多斯应用技术学院,内蒙古017000StabilityAnalysisofFractionalStag ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27温储备失效和单重休假Min(N,V)-策略的M/G/1可修排队系统蔡晓丽1,唐应辉1,21.四川师范大学数学与软件科学学院,成都610068;2.四川师范大学数学与软件科学学院,成都610068M/G/1RepairableQueueingSystemwithWarmStandbyFailurean ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Keller-Segel抛物系统解的爆破现象李远飞广东财经大学华商学院,广州511300Blow-upPhenomenafortheSolutionstoaFullyParabolicKeller-SegelSystemLIYuanfeiSchoolofMathematic,SouthChinaof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27集值优化问题的非线性增广拉格朗日方法向丽苏州大学数学科学学院,苏州215006TheNonlinearAugmentedLagrangianMethodofSet-valuedOptimizationXIANGLiDepartmentofMathematics,SoochowUniversity,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性扰动广义NNV微分系统的孤子研究欧阳成1,陈贤峰2,莫嘉琪31.湖州师范学院理学院,湖州313000;2.上海交通大学数学系,上海200240;3.安徽师范大学数学系,芜湖241003StudyfortheSolitonofNonlinearDisturbedGeneralizedNNVDif ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用徐义红,彭振华南昌大学数学系,南昌330031ANewKindofSecond-OrderSubgradientandApplicationstotheCharacterizationsforWeakMinimizerofSet-ValuedOpt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27捕食者带有疾病的入侵反应扩散捕食系统的空间斑图李成林云南省红河州蒙自市红河学院数学学院,蒙自661199SpatiotemporalPatternFormationofanInvasion-diffusionPredator-preySystemwithDiseaseinthePredatorLIC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类带收获项的离散Lotka-Volterra合作系统的四个正周期解廖华英1,周正21.南昌师范学院数学与计算机科学系,南昌330032;2.厦门理工学院应用数学学院,厦门361024FourPositivePeriodicSolutionsforaDiscreteLotka-VolterraCoo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27研究带有收获项的延迟Lotka-Volterra型区域竞争系统八个正周期解的存在性吕小俊1,张天伟2,赵凯宏31.云南大学旅游文化学院信息科学与技术系,丽江674199;2.昆明理工大学城市学院,昆明650051;3.昆明理工大学应用数学系,昆明650093EightPositivePeriodic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|