删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

偏正态数据下混合非线性位置回归模型的统计诊断

本站小编 Free考研考试/2021-12-27

偏正态数据下混合非线性位置回归模型的统计诊断 曹幸运, 聂兴锋, 吴刘仓昆明理工大学理学院, 昆明 650093 Statistical Diagnosis of Mixture Nonlinear Location Regression Model with Skew-Normal Data CAO Xingyun, NIE Xingfeng, WU LiucangFaculty of Science, Kunming University of Science and Technology, Kunming 650093, China
摘要
图/表
参考文献
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(828 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在经济、生物医学、环境科学等领域存在着这样一类混合数据,非对称、非线性并且还含有异常点或强影响点,如果只是简单的对总体数据进行诊断,得到的结果可能不精确.因此研究了偏正态数据下混合非线性位置回归模型的统计诊断,对混合数据总体不分类做诊断与分类后再做诊断相比较,发现分类后做诊断结果更精确.其次,将Pena距离推广到了偏正态非线性回归模型,给出了似然距离,Cook距离,Pena距离三个诊断统计量来判别异常点或强影响点,结果表明Pena距离对异常点更敏感,诊断效果略优于似然距离和Cook距离.最后,通过随机模拟试验研究和实例分析,表明文章提出的模型和方法是合理的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-10-10
PACS:62F10
62H12
基金资助:国家自然科学基金(11861041,11261025)资助项目.

引用本文:
曹幸运, 聂兴锋, 吴刘仓. 偏正态数据下混合非线性位置回归模型的统计诊断[J]. 应用数学学报, 2021, 44(2): 209-225. CAO Xingyun, NIE Xingfeng, WU Liucang. Statistical Diagnosis of Mixture Nonlinear Location Regression Model with Skew-Normal Data. Acta Mathematicae Applicatae Sinica, 2021, 44(2): 209-225.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I2/209


[1] Goldfeld S M, Quandt R E. A Markov model for switching regressions. Journal of Econometrics, 1973, 1:3-15
[2] McLachlan G, Peel D. Finite Mixture Models. New York:Wiley, 2000
[3] Yao W X, Wei Y, Yu C. Robust mixture regression models using t-distribution. Computational Statistics and Data Analysis, 2014, 71:116-127
[4] Song W X, Yao W X, Xing Y R. Robust mixture regression models fitting by laplace distribution. Computational Statistics and Data Analysis, 2014, 71:128-137
[5] Liu M, Lin T I. A skew-normal mixture regression model. Educational and Psychological Measurement, 2014, 74:139-162
[6] Pena D. A new statistic for influence in linear regression. Technometrics, 2005, 47(1):1-12
[7] 孟丽丽, 卢志义. 基于Pena距离的加权最小二乘估计的影响分析. 数理统计与管理, 2009, 28(2):252-257(M L L, L Z Y. Influence analysis of weighted least squares estimation based on Pena distance. Mathematical statistics and management, 2009, 28(2):252-257)
[8] 胡江. 基于Pena距离的非线性回归模型的影响分析. 大学数学, 2012, 28(5):80-85(H J. Influence analysis of nonlinear regression model based on Pena distance. College Mathematics, 2012, 28(5):80-85)
[9] 胡江. 基于Pena距离的几种回归模型的影响分析. 东南大学,2012(H J. Influence analysis of several regression models based on Pena distance. Southeast University, 2012)
[10] 胡江, 林金官, 赵彦勇. 基于Pena距离的广义线性回归模型的影响分析. 应用数学, 2017, 30(3):539-546(H J, L J G, Z Y Y. Influence analysis of generalized linear regression model based on Pena distance. Mathematica Applicata, 2017, 30(3):539-546)
[11] Xie F C, Wei B C, Lin J G. Homogeneity diagnostics for skew-normal nonlinear regression models. Statistics and Probability Letters, 2009, 79(6):821-827
[12] 万文, 吴刘仓, 马梦蝶. 偏正态数据下联合位置与尺度模型的统计诊断. 应用数学, 2017, 2(9):1-10(W W, W L C, M M D. Statistical diagnosis of joint position and scale model under partial normal data. Mathematica Applicata, 2017, 2(9):1-10)
[13] 李世凯, 吴刘仓, 詹金龙. 偏态数据下混合非线性回归模型的统计推断. 曲阜师范大学学报(自然科学版), 2015, 41(4):28-34(L S K, W L C, Z J L. Statistical inference of mixed nonlinear regression model with skewed data. Journal of Qufu Normal University, 2015, 41(4):28-34)
[14] Azzalini A. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 1985, 12(2):171-178
[15] Keribin C. Consistent estimate of the order of mixture models. Comptes Rendus De Lacademie Des Sciences, 1998, 62(2):49-66
[16] 王新洲. 非线性模型参数估计理论与应用. 武汉:武汉大学出版社,2002(W X Z. Theory and application of parameter estimation in nonlinear model. Wuhan:Wuhan University Press, 2002)
[17] 聂兴锋, 吴刘仓, 邢伊琦. 基于Pena距离的偏正态数据下位置回归模型的统计诊断. 应用数学, 2019, 32(2):311-318(N X F, W L C, X Y Q. Statistical diagnosis of position regression model under partial normal data based on Pena distance. Mathematica Applicata, 2019, 32(2):311-318)
[18] McLachlan G, Peel D. Finite Mixture Models. New York:John Wiley and Sons, 2000
[19] 韦博成, 林金官, 解锋昌. 统计诊断. 北京:高等教育出版社,2009(W B C, L J G, X F C. Statistical diagnosis. Beijing:Higher Education Press, 2009)
[20] Dempster A P, Laird N, Rubin D B. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 1977, 39:1-38

[1]朱仲义, 韦博成. 半参数非线性模型的统计诊断与影响分析[J]. 应用数学学报(英文版), 2001, 24(4): 568-581.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14886
相关话题/统计 数据 应用数学 北京 数理