删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有内部控制和边界观测具有时滞的单管热交换方程的指数稳定性

本站小编 Free考研考试/2021-12-27

具有内部控制和边界观测具有时滞的单管热交换方程的指数稳定性 郑福1, 聂坤1, 郭宝珠21. 渤海大学数理学院数学系, 锦州 121013;
2. 中国科学院系统科学与数学研究院, 北京 100190 Heat Exchanger Equation with Inner Control four and Boundary Observation with Delay ZHENG Fu1, ZHANG Yang1, GUO Baozhu21. Department of Mathematics, Science College, Bohai University, Jinzhou 121013, China;
2. Academy of Mathematics and Systems Science, CAS, Beijing 100190, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(389 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了具有时滞边界观测和内部控制的单管热交换方程的指数稳定性.首先,将闭环系统转换为合适状态空间上的抽象柯西问题.通过验证,闭环系统生成一个一致有界的C0半群,意味着系统存在唯一解.其次,分析了系统的谱分布,通过某些预解集上的预解式估计得到生成半群的最终可微性和最终紧性,这意味着系统的谱确定增长假设成立.最后,给出了系统指数稳定性的一个充分条件,此充分条件与物理参数有关而与时滞无关.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2013-09-03
PACS:O177.29
基金资助:国家自然科学基金(11201037,11371071和11871117)以及辽宁省自然科学基金201602190资助项目.

引用本文:
郑福, 聂坤, 郭宝珠. 具有内部控制和边界观测具有时滞的单管热交换方程的指数稳定性[J]. 应用数学学报, 2019, 42(2): 266-277. ZHENG Fu, ZHANG Yang, GUO Baozhu. Heat Exchanger Equation with Inner Control four and Boundary Observation with Delay. Acta Mathematicae Applicatae Sinica, 2019, 42(2): 266-277.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I2/266


[1] Xu C Z, Gauthier J P, Kupka I. Exponential stability of the heat exchanger equation. In:Proceedings of the Second European Control Conference, Vol.1, Groningen, 1993, 303-307
[2] Kanoh H. Control of heat exchangers by placement of closed-loop poles. In:Proceedings of the IFAC Symposium on Design Methods of Control Systems, Zurich, 1991, 662-667
[3] Sano H. Exponential stability of a mono-tubular heat exchanger equation with output feedback. Systems & Control Letters, 2003, 50):363-369
[4] Guo B Z, Liang X Y. Differentiability of the C0-semigroup and Failure of Riesz Basis for a Mono-tubular Heat Exchanger Equation with Output Feedback:a Case Study. Semigroup Forum, 2004, 69:462-471
[5] Yu Xu, Liu K S. Eventual regularity of the semigroup associated with the mono-tubular heat exchanger equation with output feedback. Systems & Control Letters, 2006, 55:859-862
[6] Gumowski I, Mira C. Optimization in Control Theory and Practice. Cambridge:Cambridge University Press, 1968
[7] Datko R. Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks. SIAM J. Control Optim., 1988, 26:697-713
[8] Suh I H, Bien Z. Use of time delay action in the controller design. IEEE Trans. Automat. Control, 1980, 25:600-603
[9] Kwon W H, Lee G W, Kim S W. Performance improvement, using time delays in multi-variable controller design. INT J. Control, 1990, 52:1455-1473
[10] Logemann H, Rebarber R, Weiss G. Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop. SIAM J. Control Optim., 1996, 34:572-600}
[11] Guo B Z, Yang K Y. Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation. Automatica, 2009, 45:1468-1475
[12] Guo B Z, Xu C Z, Hammouri H. Output Feedback Stabilization of a One-dimensional Wave Equation with an Arbitrary Time Delay in Boundary Observation. ESAIM:COCV, 2012, 18:22-35
[13] Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim., 2006, 45:1561-1585
[14] Zheng F, Fu L L. Spectral method for the reliability analysis of a complex redundant system. ICIC Express Letters, Part B:Applications, 2013, 4(6):1535-1541
[15] Xu G Q, Yung S P, Li L K. Stabilization of Wave Systems with Input Delay in the Boundary Control. ESAIM:COCV, 2006, 12:770-785
[16] Zheng F, Fu L L, Teng M Y. Exponential Stability of a Linear Distributed Parameter Bioprocess with Input Delay in Boundary Control. J. Fun. Spac. App., DOI:10.1155/2013/274857, 2013
[17] Curtain R F, Zwart H J. An Introduction to Infinitedimensional Linear Systems Theory. In:Texts in Applied Mathematics, Vol. 21, Springer, New York, 1995
[18] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin:Springer, 1983
[19] Ruan S G, Wei J J. On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. Appl. Medic. Biol., 2001, 18:41-52
[20] Li X, Wei J J. Stability and bifurcation analysis in a system of four coupled neurons with multiple delays. Acta Math. Appl. Sin. (English Series), 2013, 29:425-448

[1]李敏, 赵东霞, 毛莉. 带有两个小世界联接的时滞环形神经网络系统的稳定性分析[J]. 应用数学学报, 2019, 42(1): 15-31.
[2]杨炜明, 廖书. 含有预防接种的霍乱时滞模型的稳定性和hopf分支分析[J]. 应用数学学报, 2018, 41(6): 735-749.
[3]刘婷婷, 吴保卫, 刘丽丽, 王月娥. 离散切换正时滞系统在异步切换下的镇定性[J]. 应用数学学报, 2018, 41(6): 721-734.
[4]刘永奇, 刘德林, 熊建栋. 具有离散时滞和Crowley-Martin功能性反应的HIV动力学模型稳定性研究[J]. 应用数学学报, 2018, 41(4): 461-472.
[5]孟益民, 黄立宏, 郭上江. 具分布时滞双向联想记忆神经网络周期解的存在性及全局稳定性[J]. 应用数学学报, 2018, 41(3): 369-387.
[6]刘炳文, 田雪梅, 杨孪山, 黄创霞. 具有非线性死亡密度和连续分布时滞的Nicholson飞蝇模型的周期解[J]. 应用数学学报, 2018, 41(1): 98-109.
[7]王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42.
[8]孔丽丽, 李录苹. 具有不同时滞的两种捕食者-食饵恒化器模型的定性分析[J]. 应用数学学报, 2017, 40(5): 676-691.
[9]赵环环, 刘有军, 燕居让. 带分布时滞偶数阶微分方程组的振动性[J]. 应用数学学报, 2017, 40(4): 612-622.
[10]赵才地, 阳玲, 刘国威, 许正雄. 一类时滞非牛顿流方程组在二维无界区域上的整体适定性与拉回吸引子[J]. 应用数学学报, 2017, 40(2): 287-311.
[11]陈远强. 随机扰动神经网络的脉冲控制[J]. 应用数学学报, 2017, 40(1): 16-26.
[12]严勇. 一类含有最大值项的二元时滞积分不等式的推广[J]. 应用数学学报, 2017, 40(1): 85-98.
[13]王丽娜, 杨益民, 赵烨. 一类推广的森林模型波前解的稳定性[J]. 应用数学学报, 2017, 40(1): 73-84.
[14]宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48.
[15]葛照强, 冯德兴. Banach空间中广义发展算子的一致指数稳定性[J]. 应用数学学报, 2016, 39(6): 811-822.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14608
相关话题/应用数学 系统 观测 空间 统计