删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

冯·诺依曼代数的可测算子的性质

本站小编 Free考研考试/2021-12-27

冯·诺依曼代数的可测算子的性质 沈丛丛1,2, 蒋立宁2, 王利广31. 北京物资学院信息学院 北京 101149;
2. 北京理工大学数学与统计学院 北京 100081;
3. 曲阜师范大学数学科学学院 曲阜 273165 Properties of Measurable Operators Associated with a von Neumann Algebra Cong Cong SHEN1,2, Li Ning JIANG2, Li Guang WANG31. School of Information, Beijing Wuzi University, Beijing 101149, P. R. China;
2. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China;
3. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(462 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了冯·诺依曼代数的可测算子的基本性质,定义了阶梯算子, 证明了任意一个正可测算子可以由阶梯算子在定义域内按照强算子拓扑逼近,从而证明了任意一个可测算子可以由投影在定义域内按照强算子拓扑逼近.此外, 还讨论了可测算子与有界算子的复合算子的可测性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-06-04
MR (2010):O177.5
基金资助:国家自然科学基金资助项目(11671133,11371222,11701423,11871303)
通讯作者:蒋立宁,E-mail:jianglining@bit.edu.cnE-mail: jianglining@bit.edu.cn
作者简介: 沈丛丛,E-mail:shcc881111@163.com;王利广,E-mail:wangliguang0510@163.com
引用本文:
沈丛丛, 蒋立宁, 王利广. 冯·诺依曼代数的可测算子的性质[J]. 数学学报, 2019, 62(2): 293-302. Cong Cong SHEN, Li Ning JIANG, Li Guang WANG. Properties of Measurable Operators Associated with a von Neumann Algebra. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 293-302.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/293


[1] Christensen E., Wang L., Von Neumann algebras as complemented subspaces of B(H), International Journal of Mathematics, 2014, 25(11): 1450107.
[2] Conway J. B., A Course in Operator Theory, American Mathematical Society, Rhode Island, 2000.
[3] Douglas R. G., Banach Algebra Techniques in Operator Theory, Springer, Berlin, 1998.
[4] Guo M., Real Variable Function and Functional Analysis, Peking University Press, Beijing, 2005(in Chinese).
[5] Jiang L., Ma Z., Closed subspaces and some basic topological properties of noncommutative orlicz spaces, Proceedings–Mathematical Sciences, 2016, 127(3): 1–12.
[6] Jones V. F. R., Subfactors and Knots, American Mathmatical Society, Rhode Island, 1991.
[7] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras (Volume I: Elementary Theory), Academic Press, San Diego, California, 1983.
[8] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras (Volume Ⅱ: Advanced Theory), Academic Press. INC, London, 1986.
[9] Li Q., Shen J., Shi R., et al., Perturbations of self-adjoint operators in semifinite von Neumann algebras: Kato-Rosenblum theorem, J. Functional Analysis,https://doi.org/10.1016/j.jfa.2018.04.006.
[10] Ma X., Hadwin D., Wang L., On representations of M2(C)*M2(C), J. Math. Anal. Appl., 2010, 362(1): 107–113.
[11] Meng Q., The Weak Haagerup property for C*-algebras, Ann. Funct. Anal., 2017, 8(4): 502–511.
[12] Meng Q., Weak Haagerup property of W*-crossed Products, Bull. Aust. Math. Soc., 2018, 97(1): 119–126.
[13] Murphy G. J., C*-algebras and Operator Theory, Academic Press, London, 1990.
[14] Segal I. E., Irreducible representations of operator algebras, Bulletin of the American Mathematical Society, 1947, 53(2): 73–88.
[15] Shen C., Jiang L., Egoroff's theorem in measurable operators space associated a von Neumann algebra, Indian Journal of Pure and Applied Mathematics (in press).
[16] Wang L., On the properties of some sets of von Neumann algebras under perturbation, Sci. China Math., 2015, 58(8): 1707–1714.
[17] Wang L., Yuan W., A new class of Kadison-Singer algebras, Exposition Math., 2011, 29(1): 126–132.
[18] Webster C., On unbounded operators affiliated with C*-algebras, Journal of Operator Theory, 2004, 2(2): 237–244.
[19] Wei C., Wang L., Hereditary subalgebras and comparisons of positive elements, Sci. China Math., 2010, 53: 1565–1570.
[20] Wei C., Wang L., Isomorphism of extensions of C(T2), Sci. China Math., 2011, 54: 281–286.
[21] Woronowicz S. L., Unbounded elements affiliated with C*-algebras and non-compact quantum groups, Commun. Math. Phys., 1991, 136: 399–432.
[22] Wu J., Wu W., Wang L., On Similarity Degrees of finite von Neumann algebras, Taiwanese Journal of Mathematics, 2012, 16(6): 2275–2287.
[23] Xu Q., Turdebek N. B., Chen Z., Introduction to Operator Algebras and Noncommutative Lp Spaces (in Chinese), Science Press, Beijing, 2010.

[1]邱仁军. 闭值域稠定闭算子的Moore-Penrose广义逆的有限维逼近[J]. 数学学报, 2016, 59(6): 835-846.
[2]杨从仁. Hilbert空间内m-增生算子的扰动[J]. Acta Mathematica Sinica, English Series, 1985, 28(2): 266-269.
[3]万伟勋. 映射压缩的条件与 Banach 型不动点定理[J]. Acta Mathematica Sinica, English Series, 1984, 27(1): 35-52.
[4]李浩. 线性算子的值域和逆的一点注记[J]. Acta Mathematica Sinica, English Series, 1983, 26(6): 657-659.
[5]严绍宗. Ⅱ空间上酉算子(Ⅲ)[J]. Acta Mathematica Sinica, English Series, 1982, 25(5): 610-616.
[6]朱起定;赵忠信. A完备空间和闭图象定理[J]. Acta Mathematica Sinica, English Series, 1981, 24(6): 833-836.
[7]钱敏. 椭圆型算子的扩张及■半群[J]. Acta Mathematica Sinica, English Series, 1979, 22(4): 471-486.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23379
相关话题/数学 代数 空间 北京 北京物资学院