摘要本文研究了冯·诺依曼代数的可测算子的基本性质,定义了阶梯算子, 证明了任意一个正可测算子可以由阶梯算子在定义域内按照强算子拓扑逼近,从而证明了任意一个可测算子可以由投影在定义域内按照强算子拓扑逼近.此外, 还讨论了可测算子与有界算子的复合算子的可测性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-06-04 | | 基金资助:国家自然科学基金资助项目(11671133,11371222,11701423,11871303)
| 通讯作者:蒋立宁,E-mail:jianglining@bit.edu.cnE-mail: jianglining@bit.edu.cn | 作者简介: 沈丛丛,E-mail:shcc881111@163.com;王利广,E-mail:wangliguang0510@163.com |
[1] Christensen E., Wang L., Von Neumann algebras as complemented subspaces of B(H), International Journal of Mathematics, 2014, 25(11): 1450107. [2] Conway J. B., A Course in Operator Theory, American Mathematical Society, Rhode Island, 2000. [3] Douglas R. G., Banach Algebra Techniques in Operator Theory, Springer, Berlin, 1998. [4] Guo M., Real Variable Function and Functional Analysis, Peking University Press, Beijing, 2005(in Chinese). [5] Jiang L., Ma Z., Closed subspaces and some basic topological properties of noncommutative orlicz spaces, Proceedings–Mathematical Sciences, 2016, 127(3): 1–12. [6] Jones V. F. R., Subfactors and Knots, American Mathmatical Society, Rhode Island, 1991. [7] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras (Volume I: Elementary Theory), Academic Press, San Diego, California, 1983. [8] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras (Volume Ⅱ: Advanced Theory), Academic Press. INC, London, 1986. [9] Li Q., Shen J., Shi R., et al., Perturbations of self-adjoint operators in semifinite von Neumann algebras: Kato-Rosenblum theorem, J. Functional Analysis,https://doi.org/10.1016/j.jfa.2018.04.006. [10] Ma X., Hadwin D., Wang L., On representations of M2(C)*M2(C), J. Math. Anal. Appl., 2010, 362(1): 107–113. [11] Meng Q., The Weak Haagerup property for C*-algebras, Ann. Funct. Anal., 2017, 8(4): 502–511. [12] Meng Q., Weak Haagerup property of W*-crossed Products, Bull. Aust. Math. Soc., 2018, 97(1): 119–126. [13] Murphy G. J., C*-algebras and Operator Theory, Academic Press, London, 1990. [14] Segal I. E., Irreducible representations of operator algebras, Bulletin of the American Mathematical Society, 1947, 53(2): 73–88. [15] Shen C., Jiang L., Egoroff's theorem in measurable operators space associated a von Neumann algebra, Indian Journal of Pure and Applied Mathematics (in press). [16] Wang L., On the properties of some sets of von Neumann algebras under perturbation, Sci. China Math., 2015, 58(8): 1707–1714. [17] Wang L., Yuan W., A new class of Kadison-Singer algebras, Exposition Math., 2011, 29(1): 126–132. [18] Webster C., On unbounded operators affiliated with C*-algebras, Journal of Operator Theory, 2004, 2(2): 237–244. [19] Wei C., Wang L., Hereditary subalgebras and comparisons of positive elements, Sci. China Math., 2010, 53: 1565–1570. [20] Wei C., Wang L., Isomorphism of extensions of C(T2), Sci. China Math., 2011, 54: 281–286. [21] Woronowicz S. L., Unbounded elements affiliated with C*-algebras and non-compact quantum groups, Commun. Math. Phys., 1991, 136: 399–432. [22] Wu J., Wu W., Wang L., On Similarity Degrees of finite von Neumann algebras, Taiwanese Journal of Mathematics, 2012, 16(6): 2275–2287. [23] Xu Q., Turdebek N. B., Chen Z., Introduction to Operator Algebras and Noncommutative Lp Spaces (in Chinese), Science Press, Beijing, 2010.
|
[1] | 邱仁军. 闭值域稠定闭算子的Moore-Penrose广义逆的有限维逼近[J]. 数学学报, 2016, 59(6): 835-846. | [2] | 杨从仁. Hilbert空间内m-增生算子的扰动[J]. Acta Mathematica Sinica, English Series, 1985, 28(2): 266-269. | [3] | 万伟勋. 映射压缩的条件与 Banach 型不动点定理[J]. Acta Mathematica Sinica, English Series, 1984, 27(1): 35-52. | [4] | 李浩. 线性算子的值域和逆的一点注记[J]. Acta Mathematica Sinica, English Series, 1983, 26(6): 657-659. | [5] | 严绍宗. Ⅱ空间上酉算子(Ⅲ)[J]. Acta Mathematica Sinica, English Series, 1982, 25(5): 610-616. | [6] | 朱起定;赵忠信. A完备空间和闭图象定理[J]. Acta Mathematica Sinica, English Series, 1981, 24(6): 833-836. | [7] | 钱敏. 椭圆型算子的扩张及■半群[J]. Acta Mathematica Sinica, English Series, 1979, 22(4): 471-486. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23379
b(2)空间及b(2)空间上的等距映射王瑞东,王普天津理工大学理学院天津300384b(2)SpaceandIsometriesonb(2)SpacesRuiDongWANG,PuWANGCollegeofSciences,TianjinUniversityofTechnology,Tianjin3 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27模糊距离空间中几类非线性压缩不动点定理樊菁菁1,贺飞2,路宁21电子科技大学基础与前沿研究院,成都610054;2内蒙古大学数学科学学院,呼和浩特010021SomeFixedPointTheoremsforNonlinearContractionsinFuzzyMetricSpacesFANJin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27本质上是Banach空间闭凸子集的凸度量空间旷华武贵州大学数学与统计学院,贵阳550025ConvexMetricSpaceswhichAreEssentiallyClosedConvexSubsetsofBanachSpacesKUANGHuawuCollegeofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类二阶自治微分方程的代数曲线解的存在性问题杜小飞,胡彦霞华北电力大学数理学院,北京102206TheExistenceofAlgebraicCurveSolutionsforaClassofSecondOrderAutonomousDifferentialEquationsDUXiaofei,HU ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27从Hardy空间到Bloch空间的Volterra型复合算子李腾飞汕尾职业技术学院信息工程系,汕尾516600Volterra-typeCompositionOperatorsfromHardySpacesintoBloch-typeSpacesLITengfeiDepartmentofInform ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于生灭过程的多斑块毒杂草入侵模型及空间模拟刘华1,杨鹏1,谢梅1,冶建华1,马明1,魏玉梅21.西北民族大学数学与计算机科学学院,兰州730030;2.西北民族大学实验中心,兰州730030MultipatchesPoisonousWeedsInvasionModelandSpaceSimulat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间四阶-时间分数阶扩散波方程的一个新的数值分析方法胡秀玲1,张鲁明21.江苏师范大学数学与统计学院,徐州221116;2.南京航空航天大学理学院,南京210016ANewNumericalMethodforFourth-orderFractionalDiffusion-waveSystemHUXi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27局部凸空间中的广义增广对偶锥李飞1,杨玉红1,2,杨新民31.内蒙古大学数学科学学院,呼和浩特010021;2.长江师范学院数学与统计学院,重庆408100;3.重庆师范大学数学科学学院,重庆400047TheExtendedAugmentedDualConesinLocallyConvexSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27-连通空间上弱-映射族的不动点,重合点和聚合不动点朴勇杰延边大学理学院数学系,延吉133002FixedPoints,CoincidencePointsandCollectivelyFixedPointsforWeak-Mapson-Connected ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|