删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

本质上是Banach空间闭凸子集的凸度量空间

本站小编 Free考研考试/2021-12-27

本质上是Banach空间闭凸子集的凸度量空间 旷华武贵州大学数学与统计学院, 贵阳 550025 Convex Metric Spaces which Are Essentially Closed Convex Subsets of Banach Spaces KUANG HuawuCollege of Mathematics and Statistics, Guizhou University, Guiyang 550025, China
摘要
图/表
参考文献
相关文章(10)
点击分布统计
下载分布统计
-->

全文: PDF(303 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要利用凸度量空间中凸结构的性质,在保持凸组合关系与等距嵌入意义下,获得了一个凸度量空间本质上是某个Banach空间中闭凸子集的充分必要条件,并举例说明了其应用.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-11-12
PACS:O174.13
0177.2

引用本文:
旷华武. 本质上是Banach空间闭凸子集的凸度量空间[J]. 应用数学学报, 2020, 43(4): 728-741. KUANG Huawu. Convex Metric Spaces which Are Essentially Closed Convex Subsets of Banach Spaces. Acta Mathematicae Applicatae Sinica, 2020, 43(4): 728-741.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I4/728


[1] Takahashi W. A Convexity in Metric Space and Nonexpansive Mappings. Kodai Mathematical Seminar Reports, 1970, 22:142-149
[2] Nicolae A. Asymptotic Behavior of Averaged and Firmly Nonexpansive Mappings in Geodesic Spaces. Nonlinear Analysis, 2013, 87(1):102-115
[3] Abdelhakim A. A Convexity of Functions on Convex Metric Spaces of Takahashi and Applications. Journal of the Egyptian Mathematical Society, 2016, 24:348-354
[4] Machado H V. A Characterization of Convex Subsets of Normed Spaces. Kodai Mathematical Seminar Reports, 1973, 25:307-320
[5] Thuan N T. Approach for a Metric Space with a Convex Combination Operator and Applications. Journal of Mathematical Analysis and Applications, 2016, 435(1):440-460
[6] Kunzi H A, Yildiz F. Convexity Structures in T0-quasi-metric Spaces. Topology and its Applications, 2016, 200:2-18
[7] Talman L A. Fixed Points for Condensing Multifunctions in Metric Space with Convex Structure. Kodai Mathematical Seminar Reports, 1977, 29:62-70
[8] Phuengrattana W, Suantai S. Existence and Convergence Theorems for Generalized Hybrid Mappings in Uniformly Convex metric Spaces. Indian Journal of Pure and Applied Mathematics, 2014, 45(1):121-136
[9] Kaewcharoen A, Panyanak B. Fixed Points for Multivalued Mappings in Uniformly Convex Metric Spaces. International Journal of Mathematics and Mathematical Sciences, http://dx.doi.org/10.1155/2008/163580,2008

[1]胡学敏. 关于上密度无限的随机指数多项式的完备性[J]. 应用数学学报, 2018, 41(6): 811-821.
[2]葛照强, 冯德兴. Banach空间中广义发展算子的一致指数稳定性[J]. 应用数学学报, 2016, 39(6): 811-822.
[3]陈传勇, 陈平炎. B值随机变量序列一类加权和的完全收敛性[J]. 应用数学学报, 2015, 38(3): 526-534.
[4]秦丽娟. Banach空间中脉冲微分方程初值问题解的存在性[J]. 应用数学学报(英文版), 2013, 36(2): 249-256.
[5]倪仁兴. 拟增生算子方程的广义最速下降逼近的收敛性[J]. 应用数学学报(英文版), 2009, 32(1): 143-153.
[6]俞建. 自反Banach空间中Ky Fan点的存在性[J]. 应用数学学报(英文版), 2008, 31(1): 126-131.
[7]曾六川. Banach空间中渐近非扩张映象的带误差的修正的Ishikawa与Mann迭代程序[J]. 应用数学学报(英文版), 2004, 27(4): 674-681.
[8]王定成, 苏淳. B值独立同分布随机变元序列的矩完全收敛性[J]. 应用数学学报(英文版), 2004, 27(3): 440-448.
[9]徐宗本, 王利生. 非线性Lipschitz算子的定量性质(Ⅰ)─Lip数[J]. 应用数学学报(英文版), 1996, 19(2): 175-184.
[10]蒋耀林, 游兆永. 二阶非线性发展方程及其差分方程解的渐近性态[J]. 应用数学学报(英文版), 1996, 19(2): 271-278.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14798
相关话题/空间 应用数学 统计 序列 贵州大学