删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

b(2)空间及b(2)空间上的等距映射

本站小编 Free考研考试/2021-12-27

b(2)空间及b(2)空间上的等距映射 王瑞东, 王普天津理工大学理学院 天津 300384 b(2) Space and Isometries on b(2) Spaces Rui Dong WANG, Pu WANGCollege of Sciences, Tianjin University of Technology, Tianjin 300384, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(952 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要等距映射在空间结构的研究中起着很重要的作用,是泛函分析研究的有利工具. 本文将介绍一类特殊的F空间,b(2)空间, 然后给出该空间单位球面间满等距映射的表现定理,进而得出b(2)空间单位球面上满等距映射的线性延拓结论.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-04-15
MR (2010):O177
基金资助:国家自然科学基金资助项目(NSFC11301384)
通讯作者:王普,E-mail:153106304@stud.tjut.edu.cnE-mail: 153106304@stud.tjut.edu.cn
作者简介: 王瑞东,E-mail:wangruidong@tjut.edu.cn
引用本文:
王瑞东, 王普. b(2)空间及b(2)空间上的等距映射[J]. 数学学报, 2019, 62(2): 303-318. Rui Dong WANG, Pu WANG. b(2) Space and Isometries on b(2) Spaces. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 303-318.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/303


[1] An G. M., Isometries on unit sphere of (lβn), J. Math. Anal. Appl., 2005, 301: 249–254.
[2] Baker J. A., Isometries in normed space, Amer. Math. Monthly, 1971, 78: 655–658.
[3] Zhang Z. H., Liu C. Y., Zhou Y., Banach Space Geometry and Best Approximation, Science Press, Beijing, 2016.
[4] Charzynski Z., Sur les transformationes isométriques des espace du type (F), Studia Math., 1953, 13: 94–121.
[5] Cheng L. X., Dong Y. B., On a generalized Mazur–Ulam question: Extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 2011, 377: 464–470.
[6] Ding G. G., The representation theorem of onto isometric mappings between two unit spheres of l1(Γ)-type spaces and the application on isometric extension problem, Acta Math. Sin., Engl. Series, 2004, 20(6): 1089–1094.
[7] Ding G. G., The isometric extension problem in the unit spheres of lp(Γ),p>1 type spaces (in Chinese), Sci. in China, 2002, 32(11): 991–995.
[8] Ding G. G., The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Sci. China Ser. A, 2002, 45: 479–483.
[9] Ding G. G., On the extension of isometries between unit spheres of E and C(Ω), Acta Math. Sinica, 2003, 19(4): 793–800.
[10] Ding G. G., The representation of onto isometric mappings between two spheres of l-type spaces and the application on isometric extension problem, Science in China, 2004, 34(2): 157–164(in Chinese); 2004, 47(5): 722–729(in English).
[11] Ding G. G., New Analysis of Functional Analysis, Science Press, Beijing, 2007.
[12] Ding G. G., The isometric extension of an into mapping from the unit sphere S(l(Γ)) to the unit sphere S(E), Acta Math. Sci., 2009, 29B(3): 469–479.
[13] Fang X. N., Wang J. Y., Extension of isometries between unit spheres of a normed space E and the space l1(Ω), Acta Math. Sinica Chin. Ser., 2008, 51(1): 23–28.
[14] Fu X. H., Isometries on the space s, Acta Math. Sci., 2006, 26B(3): 502–508.
[15] Gehér G. P., A contribution to the Aleksandrov conservative distance problem in two dimensions, arXiv:1505.00459v1[math.MG], 2015.
[16] Li J. Z., Isometries on unit spheres of an F -space, Acta Sci. Nat. Univ. Nankai, 2012, 45: 80–85.
[17] Liu R., On extension of isometries between unit spheres of L(Γ)-type space and a Banach space E, J. Math. Anal. Appl., 2007, 333: 959–970.
[18] Mankiewicz P., On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom Phys., 1972, 20: 367–371.
[19] Mazur S., Ulam S., Sur less transformationes isometriques d'espaces vectoriels noemes, Comptes Rendus Acad Sci. Paris, 1932, 194: 946–948.
[20] Tingley D., Isometries of the unit spheres, Geometriae Dedicata, 1987, 22: 371–387.
[21] Wang R. D., On linear extension of isometries between the unit spheres of two-dimensional strictly convex normed space, Acta Math. Sinica Chin. Ser., 2008, 51(5): 847–852.
[22] Yi J. J., Wang R. D., Wang X. X., Extension of isometries between the unit spheres of complex lp(Γ)(p>1) spaces, Acta Math Sci., 2014, 34B(5): 1540–1550.
[23] Zhang L., On the isometric extension problem from the unit sphere S1(l(2)) into S1(l(3)), Acta Sci. Nat. Univ. Nankai., 2006, 39: 110–112.

[1]蒋艳, 陈绍雄. 空间lp(Γ)(1 < p < ∞)和Banach空间E的单位球面之间等距算子的延拓[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 687-696.
[2]谭冬妮;. AL~p-空间单位球面等距算子的延拓的一个注记[J]. Acta Mathematica Sinica, English Series, 2009, (04): 159-162.
[3]王瑞东. 二维严格凸赋范空间单位球面间等距映射的线性延拓[J]. Acta Mathematica Sinica, English Series, 2008, 51(5): 847-852.
[4]方习年;王建华;. 赋范空间E和l~1(Γ)的单位球面间等距映射的延拓[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 23-28.
[5]侯志彬;张丽娟;. AL~p-空间(1<p<∞)的单位球面间的非满等距映射的延拓[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1435-144.
[6]杨秀忠;. 单位球面上的等距及(λ,ψ,2)-等距映射的延拓[J]. Acta Mathematica Sinica, English Series, 2006, 49(6): 1397-140.
[7]王瑞东;. 非满等距映射的线性延拓[J]. Acta Mathematica Sinica, English Series, 2006, 49(6): 1335-133.
[8]钱李新;房艮孙;. 赋以混合范数的各向异性Besov类在不同度量下的嵌入定理[J]. Acta Mathematica Sinica, English Series, 2006, 49(2): 381-390.
[9]方习年;王建华. 单位球面间等距映射的线性延拓[J]. Acta Mathematica Sinica, English Series, 2005, 48(6): -.
[10]杨秀忠;侯志彬;傅小红. 赋β-范空间中单位球面间的等距算子的线性延拓[J]. Acta Mathematica Sinica, English Series, 2005, 48(6): -.
[11]李忠艳;李民丽. C~*-代数的实完全等距映射[J]. Acta Mathematica Sinica, English Series, 2004, 47(1): 67-70.
[12]骆建文;陆芳言. 弱闭T(N)-模的预零化子的等距映射[J]. Acta Mathematica Sinica, English Series, 2003, 46(1): 131-136.
[13]王国俊. 蕴涵格及其Fuzzy拓扑表现定理[J]. Acta Mathematica Sinica, English Series, 1999, 42(1): 133-140.
[14]许连超. 一类非平移算子的平衡态[J]. Acta Mathematica Sinica, English Series, 1991, 34(4): 479-489.
[15]周忠群. 几乎概率度量空间(Ⅱ)[J]. Acta Mathematica Sinica, English Series, 1990, 33(5): 641-645.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23380
相关话题/空间 数学 天津理工大学 理学院 天津