删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

广义映射Schrödinger-Virasoro代数的二上同调群

本站小编 Free考研考试/2021-12-27

广义映射Schrödinger-Virasoro代数的二上同调群 王松, 王晓明上海海洋大学信息学院 上海 201306 Second Cohomology Groups of the Generalized Map Schrödinger-Virasoro Algebras Song WANG Xiao, Ming WANGCollege of Information Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(355 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要该文给出了广义映射Schrödinger-Virasoro代数的所有二上同调群,并且给出了这类李代数的所有泛中心扩张.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-04-24
MR (2010):O152
基金资助:国家自然科学基金资助项目(11501359)
作者简介: 王松,E-mail:s-wang@shou.edu.cn;王晓明,E-mail:xmwang@shou.edu.cn
引用本文:
王松, 王晓明. 广义映射Schrödinger-Virasoro代数的二上同调群[J]. 数学学报, 2019, 62(4): 633-640. Song WANG Xiao, Ming WANG. Second Cohomology Groups of the Generalized Map Schrödinger-Virasoro Algebras. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 633-640.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/633


[1] Chen H., Fan G., Han J., et al., Derivations, automorphisms and second cohomology of generalized loop Schrödinger-Virasoro algebras, arXiv:1509.01916, 2015.
[2] Henkel M., Schrödinger invariance and strongly anisotropic critical systems, J. Stat. Phys., 1994, 75:1023- 1029.
[3] Henkel M., Unterberger J., Schrödinger invariance andspace-time symmetries, Nucl. Phys. B, 2003, 660:407-412.
[4] Roger C., Unterberger J., The Schrödinger-Virasoro Lie group and algebra:representation theory and cohomological study, Ann. Henri Poincaré, 2006, 7:1477-1529.
[5] Su Y., Wu H., Wang S., Yue X., Structures of generalized map Virasoro algebras, Symmetries and Groups in Contemporary Physics, in Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics, Tianjin, China, World Scientific, 2013:505-510.
[6] Tan S., Zhang X., Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras, J. Algebra, 2009, 322:1379-1394.
[7] Tan S., Zhang X., Unitary representations for the Schrödinger-Virasoro Lie algebra, J. Algebra Appl., 2013, 12:1250132, 16pp.
[8] Wang W., Li J., Xin B., Central Extensions and Derivations of Generalized Schrödinger-Virasoro algebra, Algebra Colloq, 2012, 19:735-744.
[9] Wang W., Li J., Xu Y., Derivation algebra and automorphism of the twisted deformative Schrödinger- Virasoro Lie algebra, Comm. Algebra, 2012, 40:3365-3388.
[10] Wu H., Wang S., Yue X., Structures of generalized loop Virasoro algebras, Comm. Algebra, 2014, 42:1545- 1558.

[1]戴先胜, 范广哲. 经典N=2李共形超代数的导子和第二上同调群[J]. 数学学报, 2017, 60(2): 335-342.
[2]曲海鹏, 郑丽峰. 内交换p群的中心扩张(IV)[J]. Acta Mathematica Sinica, English Series, 2011, 54(5): 739-752.
[3]曲海鹏, 张小红. 内交换p群的中心扩张 (II)[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 933-944.
[4]李立莉, 曲海鹏, 陈贵云. 内交换p-群的中心扩张(I)[J]. Acta Mathematica Sinica, English Series, 2010, 53(4): 675-684.
[5]高寿兰;姜翠波;裴玉峰;. 一类李代数的导子及中心扩张与自同构[J]. Acta Mathematica Sinica, English Series, 2009, (02): 75-82.
[6]曾波;. 量子环面上一类李代数的导子和中心扩张[J]. Acta Mathematica Sinica, English Series, 2009, (01): 165-172.
[7]蒋志洪;濮燕敏. 具有三角分解李代数的积分元和中心扩张[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 747-762.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23453
相关话题/代数 交换 数学 上海海洋大学 信息学院