删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Banach空间度量广义逆的乘积扰动

本站小编 Free考研考试/2021-12-27

Banach空间度量广义逆的乘积扰动 杜法鹏1, 薛以锋21. 徐州工程学院数学与物理科学学院 徐州 221008;
2. 华东师范大学算子代数研究中心 上海市核心数学与实践重点实验室 华东师范大学数学科学学院 上海 200241 Multiplicative Perturbations of Metric Generalized Inverse in Banach Space Fa Peng DU1, Yi Feng XUE21. School of Mathematical&Physical Sciences, Xuzhou University of Technology, Xuzhou 221008, P. R. China;
2. Research Center for Operator Algebras&Shanghai Key Laboratory of PMMP;School of Mathematical Sciences, East China Normal University, Shanghai 200241, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(446 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要X,Y为自反严格凸Banach空间.记ABX,Y)为具有闭值域RA)的有界线性算子,有界线性算子T=EAFBX,Y)为A的乘积扰动.本文研究了有界线性算子A的Moore-Penrose度量广义逆的乘积扰动.在值域RA)为α阶一致强唯一和零空间NA)为β阶一致强唯一的条件下.给出了||TM-AM||的上界估计,作为应用,我们在Lp空间上讨论了Moore-Penrose度量广义逆的乘积扰动.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-03-11
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11531003);上海市科学技术委员会项目(18dz2271000)
作者简介: 杜法鹏,E-mail:jsdfp@163.com;薛以锋,E-mail:yfxue@math.ecnu.edu.cn
引用本文:
杜法鹏, 薛以锋. Banach空间度量广义逆的乘积扰动[J]. 数学学报, 2019, 62(6): 939-948. Fa Peng DU, Yi Feng XUE. Multiplicative Perturbations of Metric Generalized Inverse in Banach Space. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 939-948.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/939


[1] Cai L., Xu W., Li W., Additive and multiplicative perturbation bounds for the Moore-Penrose inverse, Linear Algebra Appl., 2011, 434:480-489.
[2] Cao J., Xue Y., Perturbation analysis of the Moore-Penrose metric generalized inverse with applications, Banach J. Math. Anal., 2018, 3(12):709-729.
[3] Castro-González N., Ceballos J., Dopico F. M., et al., Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM J. Matrix Anal. Appl., 2013, 34:1112-1128.
[4] Castro-González N., Ceballos J., Dopico F. M., et al., Multiplicative Perturbation Theory and Accurate Solution of Least Squares Problems, Technical report, http://gauss.uc3m.es/web/personalweb/fdopico/index sp.html, 2013.
[5] Castro-González N., Ceballos J., Dopico F. M., et al., Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM J. Matrix Anal. Appl., 2013, 34:1112-1128.
[6] Castro-González N., Dopico F. M., Molera J. M., Multiplicative perturbation theory of the Moore-Penrose inverse and the least squares problem, Linear Algebra Appl., 2016, 503:1-25.
[7] Deutsch F., Linear selections for the metric projection, J. Funct. Anal., 1982, 49:269-292.
[8] Demmel J., Accurate singular value decompositions of structured matrices, SIAM J. Matrix Anal. Appl., 1999, 21:562-580.
[9] Dopico F. M., Koev P., Molera J. M., Implicit standard Jacobi gives high relative accuracy, Numer. Math., 2009, 113:519-553.
[10] Drma? Z., Veseli? K., New fast and accurate Jacobi SVD algorithm, I, SIAM J. Matrix Anal. Appl., 2008, 29:1322-342..
[11] Du F., Perturbation analysis for the Moore-Penrose metric generalized inverse of bounded linear operators, Banach J. Math. Anal., 2015, 4(9):100-114.
[12] Karmarkar N., A new polynomial-time algorithm for linear programming, Combinatorics, 1984, 4:373-395.
[13] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1984.
[14] Kró o A., Pinkus A., On stability of the metric projection operator, SIAM J. Math. Anal., 2003, 45(2):639-661.
[15] Li J., The metric projection and its applications to sloving variational inequalities in Banach spaces, Fixed Point Theory, 2004, 5(2):285-298.
[16] Meng L., Zheng B., Multiplicative perturbation bounds of the group invese and oblique projection, Filomat, 2016, 30(12):3171-3175.
[17] Müller V., Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhäuser Verlag AG, 2nd Edn., 2007.
[18] Nashed M. Z., Generalized Inverse and Applications, Academic Press, New York, 1976.
[19] Nashed M. Z., Votruba G. F., A unified approach to generalized inverses of linear operators:II, Extremal and proximinal properties, Bull. Amer. Math. Soc., 1974, 80:831-835.
[20] Wang Y., Theory of Generalized Inverse of Operators on Banach Spaces and its Application (in Chinese), Science Press, Beijing, 2005.
[21] Wang H., Wang Y., Metric generalized inverse of linear operator in Banach spaces, Chin. Ann. Math., 2003, 24B(4):509-520.
[22] Xu Q., Song C., Wang G., Multiplicative perturbations of matrices and the generalized triple reverse order law for the Moore-Penrose inverse, Linear Algebra Appl., 2017, 530:366-383.
[23] Xue Y., Stable Perturbations of Operators and Related Topics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
[24] Zhang X., Fang X., Song C., et al., Representations and norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices, Linear Multilinear Algebra, 2017, 65:555-571.

[1]倪仁兴;. 任意Banach空间中线性算子的Moore-Penrose度量广义逆[J]. Acta Mathematica Sinica, English Series, 2006, 49(6): 1247-125.
[2]李芳;梁进;肖体俊. 正则Cosine算子函数的乘积扰动定理[J]. Acta Mathematica Sinica, English Series, 2003, 46(1): 119-130.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23529
相关话题/空间 数学 华东师范大学 工程学院 上海