摘要设X,Y为自反严格凸Banach空间.记A∈B(X,Y)为具有闭值域R(A)的有界线性算子,有界线性算子T=EAF∈B(X,Y)为A的乘积扰动.本文研究了有界线性算子A的Moore-Penrose度量广义逆的乘积扰动.在值域R(A)为α阶一致强唯一和零空间N(A)为β阶一致强唯一的条件下.给出了||TM-AM||的上界估计,作为应用,我们在Lp空间上讨论了Moore-Penrose度量广义逆的乘积扰动. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-03-11 | | 基金资助:国家自然科学基金资助项目(11531003);上海市科学技术委员会项目(18dz2271000)
| 作者简介: 杜法鹏,E-mail:jsdfp@163.com;薛以锋,E-mail:yfxue@math.ecnu.edu.cn |
[1] Cai L., Xu W., Li W., Additive and multiplicative perturbation bounds for the Moore-Penrose inverse, Linear Algebra Appl., 2011, 434:480-489. [2] Cao J., Xue Y., Perturbation analysis of the Moore-Penrose metric generalized inverse with applications, Banach J. Math. Anal., 2018, 3(12):709-729. [3] Castro-González N., Ceballos J., Dopico F. M., et al., Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM J. Matrix Anal. Appl., 2013, 34:1112-1128. [4] Castro-González N., Ceballos J., Dopico F. M., et al., Multiplicative Perturbation Theory and Accurate Solution of Least Squares Problems, Technical report, http://gauss.uc3m.es/web/personalweb/fdopico/index sp.html, 2013. [5] Castro-González N., Ceballos J., Dopico F. M., et al., Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM J. Matrix Anal. Appl., 2013, 34:1112-1128. [6] Castro-González N., Dopico F. M., Molera J. M., Multiplicative perturbation theory of the Moore-Penrose inverse and the least squares problem, Linear Algebra Appl., 2016, 503:1-25. [7] Deutsch F., Linear selections for the metric projection, J. Funct. Anal., 1982, 49:269-292. [8] Demmel J., Accurate singular value decompositions of structured matrices, SIAM J. Matrix Anal. Appl., 1999, 21:562-580. [9] Dopico F. M., Koev P., Molera J. M., Implicit standard Jacobi gives high relative accuracy, Numer. Math., 2009, 113:519-553. [10] Drma? Z., Veseli? K., New fast and accurate Jacobi SVD algorithm, I, SIAM J. Matrix Anal. Appl., 2008, 29:1322-342.. [11] Du F., Perturbation analysis for the Moore-Penrose metric generalized inverse of bounded linear operators, Banach J. Math. Anal., 2015, 4(9):100-114. [12] Karmarkar N., A new polynomial-time algorithm for linear programming, Combinatorics, 1984, 4:373-395. [13] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1984. [14] Kró o A., Pinkus A., On stability of the metric projection operator, SIAM J. Math. Anal., 2003, 45(2):639-661. [15] Li J., The metric projection and its applications to sloving variational inequalities in Banach spaces, Fixed Point Theory, 2004, 5(2):285-298. [16] Meng L., Zheng B., Multiplicative perturbation bounds of the group invese and oblique projection, Filomat, 2016, 30(12):3171-3175. [17] Müller V., Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhäuser Verlag AG, 2nd Edn., 2007. [18] Nashed M. Z., Generalized Inverse and Applications, Academic Press, New York, 1976. [19] Nashed M. Z., Votruba G. F., A unified approach to generalized inverses of linear operators:II, Extremal and proximinal properties, Bull. Amer. Math. Soc., 1974, 80:831-835. [20] Wang Y., Theory of Generalized Inverse of Operators on Banach Spaces and its Application (in Chinese), Science Press, Beijing, 2005. [21] Wang H., Wang Y., Metric generalized inverse of linear operator in Banach spaces, Chin. Ann. Math., 2003, 24B(4):509-520. [22] Xu Q., Song C., Wang G., Multiplicative perturbations of matrices and the generalized triple reverse order law for the Moore-Penrose inverse, Linear Algebra Appl., 2017, 530:366-383. [23] Xue Y., Stable Perturbations of Operators and Related Topics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. [24] Zhang X., Fang X., Song C., et al., Representations and norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices, Linear Multilinear Algebra, 2017, 65:555-571.
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23529
渐近Teichmller空间的不唯一性黄志勇,周泽民中国人民大学数学系北京100872NonuniquenessPropertiesonAsymptoticTeichmullerSpaceZhiYongHUANG,ZeMinZHOUDepartmentofMathematics,Renm ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法蔡钢重庆师范大学数学科学学院重庆401331ViscosityIterativeAlgorithmsforaNewVariationalInequalityProblemandFixedPointProbleminHilbertSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多复变中正规权Zygmund空间上的几个性质黎深莲,张学军湖南师范大学数学与统计学院长沙410006SeveralPropertiesontheNormalWeightZygmundSpaceinSeveralComplexVariablesShenLianLI,XueJunZHANGCollege ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Fock空间上的Hankel算子王晓峰1,夏锦1,陈建军21.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2.肇庆学院数学与统计学院肇庆526061HankelOperatorsonGeneralizedFockSpacesXiaoFengWANG1,JinXIA1,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27类拟b-距离空间中几类循环压缩映射不动点定理司马傲蕾,贺飞,路宁内蒙古大学数学科学学院呼和浩特010021FixedPointTheoremsforSeveralCyclic-ContractiveMappingsinDislocatedQuasi-b-metricSpacesAoLeiSIMA,F ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27型C-Z算子在加权变指数Morrey空间上的有界性杨沿奇,陶双平西北师范大学数学与统计学院兰州730070Boundednessof-typeC-ZOperatorsonWeightedVariableExponentMorreySpacesYanQiYANG,Shuan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Minkowski空间的等价性定理及在Finsler几何的应用李明重庆理工大学理学院重庆400054OnEquivalenceTheoremsofMinkowskiSpacesandApplicationsinFinslerGeometryMingLISchoolofScience,Chongqin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Morrey空间上Marcinkiewicz积分与R陶双平,逯光辉西北师范大学数学与统计学院兰州730070CommutatorsofMarcinkiewiczIntegralswithRBMO()onMorreySpacesShuangPingTAO,GuangHuiLUCollegeof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|