删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

广义Fock空间上的Hankel算子

本站小编 Free考研考试/2021-12-27

广义Fock空间上的Hankel算子 王晓峰1, 夏锦1, 陈建军21. 广州大学数学与信息科学学院 广东高等学校交叉学科实验室 广州 510006;
2. 肇庆学院数学与统计学院 肇庆 526061 Hankel Operators on Generalized Fock Spaces Xiao Feng WANG1, Jin XIA1, Jian Jun CHEN21. School of Mathematics and Information Science and Key Laboratory of Mathematics and Interdisciplinary Sciences of the Guangdong Higher Education Institute, Guangzhou University, Guangzhou 510006, P. R. China;
2. School of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(494 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要利用有界(消失)平均振荡函数的性质,本文刻画了一类广义Fock空间上的Hankel算子的有界性(紧性),同时,还刻画了换位子[MfP]的有界性和紧性,其中P是一个Toeplitz投影算子,而Mf表示符号为f的乘子.最后,应用Berezin变换来研究了BMO空间和VMO空间的几何性质.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-06-19
MR (2010):O174.5
基金资助:国家自然科学基金资助项目(11471084;11301101);广东省青年创新人才项目(2017KQNCX220);肇庆学院校级课题项目(201732);肇庆学院博士启动项目(221622)
通讯作者:陈建军E-mail: chenarmy@foxmail.com
作者简介: 王晓峰,E-mail:wxf@gzhu.edu.cn;夏锦,E-mail:xiaj@cdut.edu.cn
引用本文:
王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报, 2019, 62(4): 561-572. Xiao Feng WANG, Jin XIA, Jian Jun CHEN. Hankel Operators on Generalized Fock Spaces. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 561-572.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/561


[1] Bauer W., Mean oscillation and Hankel operators on the Segal-Bargmann space, Integr. Equ. Oper. Theory, 2005, 52:1-15.
[2] Bekolle D., Berger C., Coburn L., et al., BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal., 1990, 93:310-350.
[3] Berger C., Coburn L., Toeplitz operators and quantum mechanics, J. Funct. Anal., 1986, 68:273-299.
[4] Berger C., Coburn L., Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc., 1987, 301:813-829.
[5] Berger C., Coburn L., Heat flow and Berezin-Toeplitz estimates, Amer. J. Math., 1994, 116:563-590.
[6] Berndtsson B., Ortega-Cerdà J., On interpolation and sampling in Hilbert spaces of analytic functions, J. Reine Angew. Math., 1995, 464:109-128.
[7] Cao G., Wang X., Zhu K., BMO and Hankel operators on Fock-type spaces, J. Geom. Anal., 2015, 25:1650-1665.
[8] Christ M., On the ∂ equation in weighted L2 norms in C1, J. Geom. Anal., 1991, 1:193-230.
[9] Coburn L., Isralowitz J., Li B., Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc., 2011, 363:3015-3030.
[10] Delin H., Pointwise estimates for the weighted Bergman projection kernel in Cn, using a weighted L2 estimate for the ∂ equation, Ann. Inst. Fourier Grenoble, 1998, 48:967-997.
[11] Hu Z., Lv X., Toeplitz operators on Fock spaces Fp(φ), Integr. Equ. Oper. Theory, 2014, 80:33-59.
[12] Isralowitz J., Compactness and essential norm properties of operators on generalized Fock spaces, arXiv:1305.7475, 2013.
[13] Isralowitz J., Zhu K., Toeplitz operators on the Fock space, Integr. Equ. Oper. Theory, 2012, 72:363-392.
[14] Janson S., Peetre J., Rochberg R., Hankel forms and the Fock space, Rev. Mat. Iberoamericana, 1987, 3:61-138.
[15] Lindholm N., Sampling in weighted Lp spaces of entire functions in Cn and estimates of the Bergman kernel, J. Funct. Anal., 2001, 182:390-426.
[16] Mengestie T., Product of Volterra type integral and composition operators on weighted Fock spaces, J. Geom. Anal., 2014, 24:740-755.
[17] Ortega-Cerdrà J., Seip K., Beurling-type density theorems for weighted Lp spaces of entire functions, J. Anal. Math., 1998, 75:247-266.
[18] Perälä A., Schuster A., Virtanen J., Hankel operators on Fock spaces, In:Operator Theory, Advances and Applications, 2014, Vol. 236:377-390.
[19] Schneider G., Hankel operators with anti-holomorphic symbols on the Fock space, Proc. Amer. Math. Soc., 2004, 132:2399-2409.
[20] Schuster A., Varolin D., Toeplitz operators and Carleson measures on Generalized Bargmann-Fock spaces, Integr. Equ. Oper. Theory, 2010, 66:593-611.
[21] Seip K., Youssfi E., Hankel operators on Fock spaces and related Bergman kernel estimates, J. Geom. Anal., 2013, 23:170-201.
[22] Zhu K., Operator Theory in the Function Spaces, 2nd ed., Mathematical Surveys and Monographs, Vol. 138, American Mathematical Society, 2007.
[23] Zhu K., Analysis on Fock Spaces, Springer Verlag, New York, 2012.

[1]桑元琦, 丁宣浩. 重调和Hardy空间Toeplitz算子的交换性[J]. 数学学报, 2018, 61(4): 577-584.
[2]陈建军, 王晓峰, 夏锦. 有界对称区域上Dirichlet空间中的紧Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 923-934.
[3]张阚, 丰雪, 董建国, 关驰, 于妍. 单位球加权Bergman空间上的乘法算子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 125-130.
[4]夏锦, 王晓峰, 曹广福. 调和Dirichlet空间上的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 311-330.
[5]何莉, 曹广福, 何忠华. 单位球的加权Bergman空间上具有L1符号的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 233-244.
[6]卢玉峰;杨君;. 加权Bergman空间上Berezin变换和Hankel算子乘积[J]. Acta Mathematica Sinica, English Series, 2009, (04): 43-54.
[7]于涛;程国正;. 多圆盘上的本质交换对偶Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1007-101.
[8]李颂孝;胡俊云. 单位球上Bergman空间上的紧算子[J]. Acta Mathematica Sinica, English Series, 2004, 47(5): 837-844.
[9]安恒斌;蹇人宜. Bergman空间上的斜Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2004, 47(1): 103-110.
[10]于涛;孙善利. 加权Bergman空间上的紧算子[J]. Acta Mathematica Sinica, English Series, 2001, 44(2): 233-240.
[11]卢玉峰;孙善利. Bergman空间上Toeplitz算子的局部及Fredholm性质[J]. Acta Mathematica Sinica, English Series, 1997, 40(5): -.
[12]邓东皋;彭立中. 齐次自伴锥上的高维Hankel算子与Schatten-Von Neumann类[J]. Acta Mathematica Sinica, English Series, 1988, 31(5): 623-633.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23448
相关话题/空间 数学 交换 算子 博士