摘要首先利用中心仿射几何中的结果建立了Minkowski空间的等价性定理.作为在Finsler几何中的应用,我们证明满足一定条件的 Landsberg 空间为 Berwald 空间,这些条件可以是具有闭的 Cartan 型形式,S曲率为零或平均 Berwald曲率为零. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-03-01 | | 基金资助:国家自然科学基金资助项目(11501067,11571184);the Marie Cuire IRSE Sproject(PIRSES-GA-2012-317721-LIE-DIFF-GEOM)
| 作者简介: 李明,E-mail:mingli@cqut.edu.cn |
[1] Aikou T., Some remarks on Berwald manifolds and Landsberg manifolds, Acta Math. Academiae Paedagogicae Nyíregyháaziensis, 2010, 26: 39–148. [2] Álvarez Paiva J. C., Some Problems on Finsler Geometry, Handbook of Differential Geometry, Vol. 2, NorthHolland, Elsevier, 2006. [3] Bao D., On two curvature-driven problems in Riemann–Finsler geometry, Advanced Studies in Pure Math-ematics, Math. Soc. Japan, 2007, 48: 19–71. [4] Bao D., Chern S. S., Shen Z., An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, Vol. 200, Springer-Verlag, New York, 2000. [5] Blaschke W., Vorlesungen über Differentialgeometrie Ⅱ, Affine Differentialgeometrie, Springer, Berlin, 1923. [6] Bryant R. L., Some remarks on Finsler manifolds with constant flag curvature, Houston J. Math., 2002, 28: 161–203. [7] Chern S. S., Local Equivalence and Euclidean Connections in Finsler Spaces, Chern Selected Papers, Ⅱ, 95–121, 1989. [8] Chern S. S., Shen Z., Riemann–Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6, World Scientific, Singapore, 2005. [9] Feng H., Li M., Adiabatic limit and connections in Finsler geometry, Communications in Analysis and Geometry, 2013, 21: 607–624. [10] Hildebrand R., Centro-affine hypersurface immersions with parallel cubic form, Beiträge zur Algebra und Geometrie, 2015, 56: 593–640. [11] Ichijyō Y., Finsler manifolds modeled on a Minkowski space, J. Math. Kyoto Univ., 1976, 16: 639–652. [12] Ichijyō Y., On special Finsler connections with the vanishing hv-curvature tensor, Tensor (N.S.), 1978, 32: 149–155. [13] Laugwitz D., Differentialgeometrie in Vektorräumen, Friedr. Vieweg & Sohn, Braunschweig, 1965. [14] Laugwitz D., Zur Differentialgeometrie der Hyperflächen in Vektorräumen und zur affingeometrischen Deutung der Theorie der Finsler-Räume, Math. Z., 1957, 67: 63–74. [15] Laugwitz D., Eine Beziehung zwischen affiner und Minkowskischer Differentialgeometrie, Publ. Math. Debrecen, 1957, 5: 72–76. [16] Li A., Simon U., Zhao G., Global Affine Differential Geometry of Hypersurfaces, W. de Gruyter, Berlin-New York, 1993. [17] Mo X., An Introduction to Finsler Geometry, Peking University Series in Math., Vol. 1, World Scientific, Singapore, 2006. [18] Mo X., Huang L., On characterizations of Randers norms in a Minkowski space, International Journal of Mathematics, 2010, 21: 523–535. [19] Nomizu K., Sasaki T., Affine Differential Geometry, Cambridge University Press, Cambridge, 1994. [20] Schneider R., Zur affinen Differentialgeometrie im Groβen, I, Math. Z., 1967, 101: 375–406. [21] Schneider R., Zur affinen Differentialgeometrie im Groβen, Ⅱ, Math. Z., 1967, 102: 1–8. [22] Simon U., Schwenk-Schellschmidt A., Viesel H., Introduction to the Affine Differential Geometry of Hypersurfaces, Science University Tokyo, Tokyo, 1991. [23] Shen Y., Shen Z., Introduction to Modern Finsler Geometry, World Scientific, Singapore, 2016. [24] Shen Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001. [25] Shen Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001. [26] Shen Z., Landsberg Curvature, S-curvature and Riemann Curvature, Riemann–Finsler Goemetry, MSRI Publications, 2004, 50: 303–355. [27] Song P., Li M., On some properties of the Cartan type one form of a Finsler manifold, Journal of Southwest University (Natural Science Edition), 2014, 36(10): 119–123. [28] Szilasi J., Vincze C., A new look at Finsler connections and special Finsler manifolds. Acta Mathematica Academiae Paedagogicae Nyiregyháziensis, 2000, 16: 33–63. [29] Zhang W., Lectures on Chern-Weil Theory and Witten Deformations, Nankai Tracts in Mathematics, Vol. 4, World Scientific, Singapore, 2001.
|
[1] | 刘会立. 三维Minkowski空间中曲面的广义Weierstrass公式[J]. Acta Mathematica Sinica, English Series, 1995, 38(2): -. | [2] | 陈维桓. 关于3维Minkowski空间中类空曲面的若干结果[J]. Acta Mathematica Sinica, English Series, 1994, 37(3): 309-316. | [3] | 黄宣国. 三维空间内的Weingarten曲面[J]. Acta Mathematica Sinica, English Series, 1988, 31(3): 332-340. | [4] | ;. 数学学报第29卷(1986)总目录[J]. Acta Mathematica Sinica, English Series, 1986, 29(6): 853-859. | [5] | 黄一知. 三维Minkowski空间R~(2,1)中常曲率曲面的Bcklund定理及其高维推广[J]. Acta Mathematica Sinica, English Series, 1986, 29(5): 684-690. | [6] | 忻鼎稼. 某些芬斯拉空间的对称性质[J]. Acta Mathematica Sinica, English Series, 1959, 9(2): 191-198. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23366
Morrey空间上Marcinkiewicz积分与R陶双平,逯光辉西北师范大学数学与统计学院兰州730070CommutatorsofMarcinkiewiczIntegralswithRBMO()onMorreySpacesShuangPingTAO,GuangHuiLUCollegeof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27b(2)空间及b(2)空间上的等距映射王瑞东,王普天津理工大学理学院天津300384b(2)SpaceandIsometriesonb(2)SpacesRuiDongWANG,PuWANGCollegeofSciences,TianjinUniversityofTechnology,Tianjin3 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27模糊距离空间中几类非线性压缩不动点定理樊菁菁1,贺飞2,路宁21电子科技大学基础与前沿研究院,成都610054;2内蒙古大学数学科学学院,呼和浩特010021SomeFixedPointTheoremsforNonlinearContractionsinFuzzyMetricSpacesFANJin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27本质上是Banach空间闭凸子集的凸度量空间旷华武贵州大学数学与统计学院,贵阳550025ConvexMetricSpaceswhichAreEssentiallyClosedConvexSubsetsofBanachSpacesKUANGHuawuCollegeofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27从Hardy空间到Bloch空间的Volterra型复合算子李腾飞汕尾职业技术学院信息工程系,汕尾516600Volterra-typeCompositionOperatorsfromHardySpacesintoBloch-typeSpacesLITengfeiDepartmentofInform ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于生灭过程的多斑块毒杂草入侵模型及空间模拟刘华1,杨鹏1,谢梅1,冶建华1,马明1,魏玉梅21.西北民族大学数学与计算机科学学院,兰州730030;2.西北民族大学实验中心,兰州730030MultipatchesPoisonousWeedsInvasionModelandSpaceSimulat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间四阶-时间分数阶扩散波方程的一个新的数值分析方法胡秀玲1,张鲁明21.江苏师范大学数学与统计学院,徐州221116;2.南京航空航天大学理学院,南京210016ANewNumericalMethodforFourth-orderFractionalDiffusion-waveSystemHUXi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27局部凸空间中的广义增广对偶锥李飞1,杨玉红1,2,杨新民31.内蒙古大学数学科学学院,呼和浩特010021;2.长江师范学院数学与统计学院,重庆408100;3.重庆师范大学数学科学学院,重庆400047TheExtendedAugmentedDualConesinLocallyConvexSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27-连通空间上弱-映射族的不动点,重合点和聚合不动点朴勇杰延边大学理学院数学系,延吉133002FixedPoints,CoincidencePointsandCollectivelyFixedPointsforWeak-Mapson-Connected ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|