删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Morrey空间上Marcinkiewicz积分与R

本站小编 Free考研考试/2021-12-27

Morrey空间上Marcinkiewicz积分与R 陶双平, 逯光辉西北师范大学数学与统计学院 兰州 730070 Commutators of Marcinkiewicz Integrals with RBMO(μ) on Morrey Spaces Shuang Ping TAO, Guang Hui LUCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(491 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文建立了 Marcinkiewicz 积分M与具离散系数的正则有界平均振荡空间RBMO(μ)生成的交换子Mb在非齐性度量测度空间上的有界性. 在控制函数λ满足-弱反双倍条件的假设下, 当p∈(1,∞)时,证明了MbLpμ)上是有界的. 另外,还得到了Mb在 Morrey 空间上的有界性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-05-29
MR (2010):O174.2
基金资助:国家自然科学基金资助项目(11561062);博士科研启动基金资助项目(0002020203)
通讯作者:逯光辉,E-mail:lghwmm1989@126.comE-mail: lghwmm1989@126.com
作者简介: 陶双平,E-mail:taosp@nwnu.edu.cn
引用本文:
陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278. Shuang Ping TAO, Guang Hui LU. Commutators of Marcinkiewicz Integrals with RBMO(μ) on Morrey Spaces. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 269-278.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/269


[1] Bui T. A., Duong X. T., Hardy spaces, regularized BMO spaces and the boundedness of Calderón–Zygmund operators on non-homogeneous spaces, J. Geom. Anal., 2013, 23: 895–932.
[2] Coifman R. R., Weiss G., Analyse Harmonique Non-commutative sur certains Espaces Homogènes, Lecture Notes in Mathematics, 242, Springer-Verlag, Berlin-New York, 1971.
[3] Coifman R. R., Weiss G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 1977, 83(4): 569–645.
[4] Cao Y. H., Zhou J., Morrey spaces for non-homogeneous metric measure spaces, Abstract and Applied Analysis, 2013, 2013(1): 1–8.
[5] Cao Y. H., Zhou J., The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces, J. Ineq. Appl., 2015, 2015(1): 1–18.
[6] Fu X., Lin H. B., Yang D. C., Yang D. Y., Hardy spaces Hp over non-homogeneous metric measure spaces and their applications, Sci. China Math., 2015, 58(2): 309–388.
[7] Fu X., Yang D. C., Yang D. Y., The molecular characterization of the Hardy space H1 on non-homogeneous metric measure spaces and its application, J. Math. Anal. Appl., 2014, 410(2): 1028–1042.
[8] Fu X., Yang D. C., Yuan W., Generalized fractional integral and their commutators over non-homogeneous metric measure spaces, Taiwan. J. Math., 2014, 18(2): 509–557.
[9] Hytönen T., A framework for non-homogeneous analysis on metric spaces, and RBMO space of Tolsa, Publ. Math., 2010, 54(2): 485–504.
[10] Hu G. E., Lin H. B., Yang D. C., Marcinkiewicz integrals with non-doubling measures, Inte. Equ. Oper. The., 2007, 58(2): 205–238.
[11] Hytönen T., Yang D. C., Yang D. Y., The Hardy space H1 on non-homogeneous metric spaces, Math. Proc. Cambridge Philos. Soc., 2012, 153(1): 9–31.
[12] Lu G. H., Tao S. P., Generalized Morrey space over non-homogeneous metric measure spaces, J. Aus. Math. Soc., 2017, 103(2): 268–278.
[13] Lu G. H., Tao S. P., Commutators of Littlewood–Paley gκ*-functions on non-homogeneous metric measure spaces, Open Math., 2017, 15(2): 1283–1299.
[14] Lu G. H., Tao S. P., Boundedness of commutators of Marcinkiewicz integrals on non-homogeneous metric measure spaces, J. Funct. Spaces, 2015, 2015(1): 1–12.
[15] Lin H. B., Wu S. Q., Yang D. C., Boundedness of certain commutators over non-homogeneous metric measure spaces, Anal. Math. Phys., 2017, 7(2): 187–218.
[16] Lin H. B., Yang D. C., Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces, Sci. China Math., 2014, 57(1): 123–144.
[17] Lu G. H., Zhou J., Estimates for fractional type Marcinkiewicz integrals with non-doubling measures, J. Ine. Appl., 2014, 2014(1): 1–14.
[18] Sawano Y., Tanaka H., Morrey sapces for non-doubling measures, Acta Math. Sin., Engl. Ser., 2005, 21(6): 1535–1544.
[19] Tolsa X., Littlewood–Paley theory and the T (1) theorem with non-doubling measures, Advances in Math., 2001, 164(1): 57–116.
[20] Tolsa X., BMO, H1 and Calderón–Zygmund operators for non-doubling measures, Math. Ann., 2001, 319(1): 89–149.
[21] Wang M. M., Ma S. X., Lu G. H., Littlewood–Paley gλ,μ*-function and its commutator on non-homogeneous generalized Morrey spaces, Tokyo J. Math., in Published.

[1]杨沿奇, 陶双平. θ型C-Z算子在加权变指数Morrey空间上的有界性[J]. 数学学报, 2019, 62(3): 503-514.
[2]金建军, 唐树安. 解析Morrey域的若干刻画[J]. 数学学报, 2019, 62(1): 167-176.
[3]王松柏. 带非光滑核的多线性Marcinkiewicz积分的加权界[J]. 数学学报, 2018, 61(4): 663-674.
[4]王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间[J]. 数学学报, 2018, 61(4): 641-650.
[5]王定怀, 周疆. 一类新型BMO空间[J]. 数学学报, 2017, 60(5): 833-846.
[6]张蕾, 石少广, 郑庆玉. 含参数加权极大Lebesgue空间中次线性算子的有界性质[J]. 数学学报, 2017, 60(3): 521-530.
[7]王玮, 侯晋川. 自伴标准算子代数上强保持k-斜交换性映射的刻画[J]. 数学学报, 2017, 60(1): 39-52.
[8]刘风. 沿复合子簇的粗糙核极大算子[J]. 数学学报, 2016, 59(4): 561-576.
[9]毛素珍, 孙丽静, 伍火熊. 双线性Fourier乘子交换子的有界性与紧性[J]. 数学学报, 2016, 59(3): 317-334.
[10]李立莉. 单群2G2(32n+1)的拟刻画[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 359-364.
[11]高贵连, 樊云. 多线性Hausdorff算子的Sharp估计[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 153-160.
[12]束立生, 王敏, 瞿萌. 变指数Herz空间上的Hardy型算子的交换子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 29-40.
[13]陈艳萍, 韩寒. Hardy-Littlewood极大算子的交换子的尖锐加权模不等式[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 445-452.
[14]陶双平, 任转喜. n维Hausdorff交换子的加权估计[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 351-364.
[15]王华. 分数次积分算子的交换子在加权Morrey空间上的一些估计[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 889-906.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23376
相关话题/空间 数学 交换 科研 西北师范大学