删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

奇异积分算子q-变差的定量最优加权估计

本站小编 Free考研考试/2021-12-27

奇异积分算子q-变差的定量最优加权估计 程旺, 马涛武汉大学数学与统计学院 武汉 430070 Quantitative and Sharp Weighted Estimates for q-Variations of Singular Operators Wang CHENG, Tao MASchool of Mathematics and Statistics, Wuhan 430070, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(536 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文将定量最优Ap权理论推广到联系于ω-Calderón--Zygmund 算子的q-变差情形.这些结果利用了 Lerner 最新给出的稀疏控制方法来控制 q-变差,和 Hytönen 等关于q-变差的最优加权成果相比, 本文涉及的ω仅需满足 Dini 条件, 并且其截断是非光滑的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-05-24
MR (2010):O174.2
基金资助:国家自然科学基金资助项目(11671308,11431011)
作者简介: 程旺,E-mail:1094831650@qq.com;马涛,tma.math@whu.edu.cn
引用本文:
程旺, 马涛. 奇异积分算子q-变差的定量最优加权估计[J]. 数学学报, 2019, 62(2): 279-286. Wang CHENG, Tao MA. Quantitative and Sharp Weighted Estimates for q-Variations of Singular Operators. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 279-286.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/279


[1] Bourgain J., Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHES, 1989, 68: 5–41.
[2] Campbell J. T., Jones R. L., Reinhold K., et al., Oscillation and variation for the Hilbert transform, Duke Math. J., 2000, 105(1): 59–83.
[3] Campbell J. T., Jones R. L., Reinhold K., et al., Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 2003, 355(5): 2115–2137.
[4] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[5] Hytönen T., The sharp weighted bound for general Calderón–Zygmund operators, Ann. of Math. (2), 2012, 175(3): 1473–1506.
[6] Hytönen T., Lacey M., Pérez C., Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc., 2013, 45(3): 529–540.
[7] Hytönen T., Roncal L., Tapiola O., Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math., 2017, 218(1): 133–164.
[8] Jones R. L., Rosenblatt J. M., Wierdl M., Oscillation in ergodic theory: higher dimensional results, Israel J. Math., 2003, 135(1): 1–27.
[9] Lacey M., An elementary proof of the A2 bound, Israel J. Math., 2015, 217(1): 181–195.
[10] Lépingle D., La variation dórdre p des semi-martingales, Z.Wahrscheinlichkeitstheor Verw. Geb., 1976, 36(4): 295–316.
[11] Lerner A. K., On an estimate of Calderón–Zygmund operators by dyadic positive operators, J. Anal. Math., 2013, 121: 141–161.
[12] Lerner A. K., A simple proof of the A2 conjecture, Int. Math. Res. Not. IMRN, 2013, 2013(14): 3159–3170.
[13] Lerner A. K., On pointwise estimates involving sparse operators, New York J. Math., 2016, 22: 341–349.
[14] Ma T., Torrea J. L., Xu Q., Weighted variation inequalities for differential operators and singular integrals, J. Funct. Anal., 2015, 265(2): 545–561.
[15] Ma T., Torrea J. L., Xu Q., Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 2017, 60(8): 1419–1442.
[16] Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165(3): 207–226.
[17] Pisier G., Xu Q., The strong p-variation of martingale and orthogonal series, Probab. Theory Related fields, 1988, 77(4): 497–514.

[1]杨沿奇, 陶双平. θ型C-Z算子在加权变指数Morrey空间上的有界性[J]. 数学学报, 2019, 62(3): 503-514.
[2]Xing FU, Ji Man ZHAO. Endpoint Estimates of Generalized Homogeneous Littlewood-Paley g-functions over Non-Homogeneous Metric Measure Spaces[J]. Acta Mathematica Sinica, English Series, 2016, 32(9): 1035-1074.
[3]宋乃琪, 赵纪满. Heisenberg型群上的仿积算子[J]. 数学学报, 2016, 59(4): 433-450.
[4]Yan LIN, Guo Ming ZHANG. Weighted Estimates for Commutators of Strongly Singular Calderón-Zygmund Operators[J]. Acta Mathematica Sinica, English Series, 2016, 32(11): 1297-1311.
[5]Bao De LI, Xing Ya FAN, Zun Wei FU, Da Chun YANG. Molecular Characterization of Anisotropic Musielak-Orlicz Hardy Spaces and Their Applications[J]. Acta Mathematica Sinica, English Series, 2016, 32(11): 1391-1414.
[6]石少广. 带Hörmander型核的单边奇异积分算子的加权不等式[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 613-624.
[7]徐景实, 周放军. 非双倍测度空间上的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1001-1012.
[8]刘宗光, 李佳. Calderón--Zygmund 型算子及其交换子的有界性[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 541-550.
[9]谌稳固;韩永生;苗长兴;. Calderón-Zygmund算子在H_b~p空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2008, 51(3): 487-492.
[10]HaiLongHe1Contact Information and JianGongYou1Contact Information. An Improved Result for Positive Measure Reducibility of Quasi-periodic Linear Systems[J]. Acta Mathematica Sinica, English Series, 2006, 22(1): 77-80.
[11]张璞;徐罕. Calderón-Zygmund型算子交换子的加权尖锐估计[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 625-636.
[12]唐林;杨大春. 多线性算子在Herz型Hardy空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2001, 44(5): 861-868.
[13]QUEK Tong Seng;杨大春. R~n上加权弱Hardy空间中的Calderón-Zygmund型算子[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 517-526.
[14]邓东皋;韩永生. Lipschitz曲线上的Besov空间和Triebel-Lizorkin空间(Ⅱ)——Calderón-Zygmund算子与空间的刻划[J]. Acta Mathematica Sinica, English Series, 1993, 36(1): 122-135.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23377
相关话题/空间 数学 控制 交换 算子