删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

随机SIRS模型拟最优控制存在的充分条件

本站小编 Free考研考试/2021-12-27

随机SIRS模型拟最优控制存在的充分条件 牟晓洁1, 张启敏1,2, 王宗11. 北方民族大学数学与信息科学学院, 银川 750021;
2. 宁夏大学数学统计学院, 银川 750021 Sufficient Condition for Near-optimal Control of a Stochastic Sirs Epidemic Model MU Xiaojie1, ZHANG Qimin1,2, WANG Zong11. School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China;
2. School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
摘要
图/表
参考文献
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(442 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要通常的流行病模型参数都是确定的,但由于各种不确定因素的影响,模型的参数很难准确的得到.本文讨论一类不确定参数随机SIRS传染病模型的拟最优控制,目标函数为治疗疾病的过程中所花费的成本尽可能小.根据伴随方程的估计值,给出拟最优控制的误差估计.利用Hamiltonian函数建立了拟最优控制的充分条件,并通过数值算例验证了控制变量对疾病的影响.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-05-21
PACS:O175.1
基金资助:国家自然科学基金(11661064),北方民族大学研究生创新项目资助(YCX18090).

引用本文:
牟晓洁, 张启敏, 王宗. 随机SIRS模型拟最优控制存在的充分条件[J]. 应用数学学报, 2019, 42(4): 442-454. MU Xiaojie, ZHANG Qimin, WANG Zong. Sufficient Condition for Near-optimal Control of a Stochastic Sirs Epidemic Model. Acta Mathematicae Applicatae Sinica, 2019, 42(4): 442-454.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I4/442


[1] Zaman G, Yong K H, Jung I H. Stability analysis and optimal vaccination of an SIR epidemic models. Biosystems, 2008, 93(3):240-249
[2] Kar T K, Batabyal A. Stability analysis and optimal control of an SIR epidemic model with vaccination. Biosystems, 2011, 104(2-3):127-135
[3] 陈易亮, 滕志东. 随机SIVS传染病模型的持久性和灭绝性. 东北师大学报(自然科学版), 2018, 50(1):47-53(Chen Y L, Teng Z D. The extinction and persistence of stochastical perturbed SIVS epidemic models with general nonlinear incidence rate. Journal of Northeast Normal University (Natural Science Edition), 2018, 50(1):47-53)
[4] Wang Q, Liu Z J, Zhang X. Incorporating prey refuge into a predator-prey system with imprecise parameter estimates. Computational and Applied Mathematics, 2017, 36(2):1067-1084
[5] Das A, Pal M. A mathematical study of an imprecise SIR epidemic model with treatment control. Journal of Applied Mathematics and Computing, 2018, 56(1-2):477-500
[6] Lahrouz A, Omari L, Kiouach D, Belmaâti A. Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination. Applied Mathematics and Computation, 2012, 218(11):6519-6525
[7] Yong J, Zhou X. Stochastic control:Hamiltonian systems and HJB equations. New York:Springer, 1999
[8] Cao B Q, Shan M, Zhang Q M, Wang W M. A stochastic SIS epidemic model with vaccination. Physica A:Statistical Mechanics & Its Applications, 2017, 486(1):127-143
[9] Mao X R. Stochastic differential equations and their applications. Chichester:Horwood Publishing, 1997
[10] Clarke F H. Optimization and nonsmooth analysis. New Jersey:Wiley, 1983
[11] Higham D. An algorithmic introduction to numerical simulation of stochastic differential equations. Siam Review, 2001, 43(3):525-546
[12] 王改霞, 刘纪轩, 李学志. 年龄结构SIQR传染病模型及稳定性. 应用数学学报, 2018, 41(6):777-787(Wang G X, Liu J X, Li X Z. Stability of Age-Structured SIQRS Epidemiological Model with Vaccination Strategies. Acta Mathematicae Applicatae Sinica, 2018, 41(6):777-787)

[1]杨万铨, 温水根. 群体多目标决策综合有效解的性质[J]. 应用数学学报, 2014, 37(6): 961-967.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14629
相关话题/控制 应用数学 统计 疾病 北方民族大学