删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

随机扰动神经网络的脉冲控制

本站小编 Free考研考试/2021-12-27

随机扰动神经网络的脉冲控制 陈远强贵州民族大学理学院, 贵阳 550025 Impulsive Control of Neural Networks with Random Disturbance CHEN YuanqiangCollege, Guizhou Minzu University, Guiyang 550025, China
摘要
图/表
参考文献(0)
相关文章(12)
点击分布统计
下载分布统计
-->

全文: PDF(368 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要脉冲控制具有响应速度快,鲁棒性和抗干扰能力好的特点,被广泛应用于参数随机扰动的动力学系统的控制.本文研究一类参数随机扰动的变时滞细胞神经网络在脉冲控制下的全局指数稳定性问题.利用Lyapunov稳定性理论和离散Halanay不等式技术手段,分别给出在脉冲控制下,参数随机扰动和无参数扰动的变时滞细胞神经网络全局指数稳定的充分条件.最后,通过数值算例说明所得结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2011-01-26
PACS:O231.1
基金资助:国家自然科学基金(11171079),贵州省科学技术基金([2014]2089)和贵州省数学建模及其应用创新人才团队([2013]405)资助项目.
引用本文:
陈远强. 随机扰动神经网络的脉冲控制[J]. 应用数学学报, 2017, 40(1): 16-26. CHEN Yuanqiang. Impulsive Control of Neural Networks with Random Disturbance. Acta Mathematicae Applicatae Sinica, 2017, 40(1): 16-26.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I1/16


[1] Liu X, Teo K L, Xu B. Exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. IEEE Trans. Neural Networks, 2005, 16:1329-1339
[2] Yang Z, Xu D. Stability analysis of delay neural networks with impulsive effects. IEEE Trans. Circuits Syst.Ⅱ, 2005, 52:517-521
[3] Chua L O, Yang L. Cellular neural networks:Theory. IEEE Trans. Circuits Syst. CAS, 1988, 35:1257-1272
[4] Civalleri P P, Gilli M. A set of stability criteria for delayed cellular neural networks. IEEE Trans. Circuits Syst. I, 2001, 48:494-498
[5] Stamova I M, Stamov G T. Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics. J. Comput. Appl. Math, 2001, 130:163-171
[6] Akca H, Alassar R, Covachev V, Covacheva Z, Al-Zahrani E. Continuous-time additive Hopfield-type neural networks with impulses. J. Math. Anal. Appl, 2004, 290:436-451
[7] Yang D G, Hu C Y. Global asymptotic stability criteria of Bam neural networks with time delays. International Journal of Advancements in Computing Technology, 2012, 4:9-16
[8] Zhang Y Q, Liu C X. H∞ control of fuzzy impulsive systems with quantized feedback. Journal of Software, 2009, 4:444-451
[9] Wu X F, Xu C, Feng J. Mean synchronization of pinning complex networks with linearly and nonlinearly time-delay coupling. International Journal of Digital Content Technology and its Applications, 2011, 5:33-46
[10] Liu X, Ballinger G. Uniform asymptotic stability of impulsive delay differential equations. Computer and Mathematics with Applications, 2011, 41:903-915
[11] Jin Y Q, Lei J W, Liang Y. Tracking of super chaotic system with static uncertain functions and unknown parameters. Journal of Computers, 2012, 7:2853-2860
[12] Li W, Cao J, Wu D. Multi-feature fusion tracking based on a new particle filter. Journal of Computers, 2012, 7:2939-2947
[13] Wu J, Wang Y G, Huang J, Zhou H Y. Nonlinear internal model control using Echo state network for pneumatic muscle systemd. Journal of Computers, 2012, 7:3060-3067
[14] Du J J, Song C Y. Multi-PI control for block-structured nonlinear systems. Journal of Computers, 2012, 7:3044-3051
[15] Whitehead B, Lung C H, Rabinovitch P. Tracking per-flow state-binned duration flow tracking. Journal of Networks, 2012, 7:37-46
[16] Wu X. A distributed trust evaluation model for mobile p2p systems. Journal of Networks, 2012, 7:157-165
[17] Gao Y, Wu M, Du W F. Performance research of modulation for optical wireless communication system. Journal of Networks, 2011, 6:1099-1108
[18] Wu X, Lou P H, Tang D B. Multi-objective genetic algorithm for system identification and controller optimization of automated guided vehicle. Journal of Networks, 2011, 6:982-991
[19] Li H, Shen Y H, Xu K. Neural network with momentum for dynamic source separation and its convergence analysis. Journal of Networks, 2011, 6:791-799
[20] Zheng A W, Gao Y H, Ma Y P, Zhou J P. Software design and development of Chang'E-1 fault diagnosis system. Journal of Software, 2012, 7:2687-2694
[21] Hu S B, Shu H, Lin T C. Analysis on stability of a network based on RED Scheme. Journal of Networks, 2011, 6:654-661
[22] Shao J, Jia Z, Li Z P, Liu F Q, Zhao J W, Peng P Y. A closed-loop background subtraction approach for multiple models based multiple objects tracking. Journal of Multimedia, 2011, 6:33-38
[23] Gao T, Wang P, Wang C S, Yao Z J. Feature particles tracking for moving objects. Journal of Multimedia, 2012, 7:408-414
[24] Arik S, Tavsanoglu V. On the global asymptotic stability of delayed cellular neural networks. IEEE Trans. Circuits Syst., 2000, 47:571-574
[25] Huang H, Cao J. On global asymptotic stability of recurrent neural networks with time-varying delays. Appl. Math. Comput, 2003, 142:143-154
[26] Liz E, Ferreiro J B. A note on the global stability of generalized difference equations. Appl. Math. Lett., 2002, 15:655-659

[1]王丽娜, 杨益民, 赵烨. 一类推广的森林模型波前解的稳定性[J]. 应用数学学报, 2017, 40(1): 73-84.
[2]葛照强, 冯德兴. Banach空间中广义发展算子的一致指数稳定性[J]. 应用数学学报, 2016, 39(6): 811-822.
[3]周辉, 周宗福. S-型分布时滞的细胞神经网络的概周期解[J]. 应用数学学报(英文版), 2013, 36(3): 521-531.
[4]乔琛, 徐宗本. Sigmoid型静态连续反馈神经网络的临界全局指数稳定性[J]. 应用数学学报(英文版), 2012, (6): 961-971.
[5]周少波. 马尔科夫切换型中立型随机泛函微分方程[J]. 应用数学学报(英文版), 2012, (6): 1128-1140.
[6]张为元, 李俊民, 夏志乐. 时变线性分布参数系统的鲁棒指数稳定性分析[J]. 应用数学学报(英文版), 2012, 35(5): 879-891.
[7]陈远强, 许弘雷. 脉冲控制系统的渐近稳定性分析[J]. 应用数学学报(英文版), 2010, 33(3): 479-489.
[8]孟益民, 黄立宏, 郭振远. 具不连续激励函数Cohen-Grossberg神经网络周期解的全局指数稳定性[J]. 应用数学学报(英文版), 2009, 32(1): 154-168.
[9]An Ping CHEN, Jin De CAO, Li Hong HUANG. 时滞BAM神经网络周期解的存在性和全局指数稳定性[J]. 应用数学学报(英文版), 2005, 28(2): 193-209.
[10]李雪梅, 黄立宏. 具有外部输入和偏差的细胞神经网络的完全稳定性[J]. 应用数学学报(英文版), 2003, 26(3): 475-486.
[11]赵春山, 李开泰. 描述地球物理流动的磁流体型发展方程定常解的L~r指数稳定性[J]. 应用数学学报(英文版), 2002, 25(4): 604-616.
[12]王利生, 陈白丽. 非线性系统稳定分析的特征函数法及其应用[J]. 应用数学学报(英文版), 2001, 24(4): 495-501.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14254
相关话题/应用数学 控制 细胞 系统 统计