摘要在满足一定的正则性假设条件下,建立了θ型Calderón-Zygmund算子Tθ在一类变指数Lebesgue空间上的加权有界性.进一步得到了Tθ在加权变指数Herz空间和Herz-Morrey空间上的有界性.另外,还证明了相应的交换子[b,Tθ]在广义加权变指数Morrey空间上是有界的. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-09-28 | | 基金资助:国家自然科学基金资助项目(11561062)
| 通讯作者:陶双平E-mail: taosp@nwnu.edu.cn | 作者简介: 杨沿奇,E-mail:yangyanqi521@126.com |
[1] Acerbi E., Mingione G., Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., 2002, 164:213-259. [2] Acerbi E., Mingione G., Gradient estimates for a class of parabolic systems, Duke. Math. J., 2007, 136:285-320. [3] Alveraez J., Pérez C., Estimates with A∞ weights for various singular integral operators, Boll. Un. Mat. Ital., 1994, 1:123-133. [4] Cruz-Uribe D., Fiorenza A., Martell J. M., Pérez C., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2006, 31:239-264. [5] Cruz-Uribe D., Fiorenza A., Neugebauer C. J., Weighted norm inequalities for the maximal operators on variable Lebesgue spaces, J. Math. Anal. Appl., 2012, 394:744-760. [6] Cruz-Uribe D., Wang L. A. D., Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 2017, 369:1205-1235. [7] Calderón A. P., Zygmund A., On the existence of certain singular integrals, Acta Math., 1952, 88:85-139. [8] Diening L., Hästö P., Muckenhoupt weights in variable exponent spaces, 2011, Preprint. [9] Diening L., Harjulehto P., Hästö P., Ru?i?ka M., Lebesgue and Sobolev Space with Variable Exponents, Lecture Notes in Mathematics, Splinger-Verlag, 2011, 2017. [10] Diening L., Ru?i?ka M., Calderón-Zygmund operators on generalized Lebesgue spaces Lp and problem related to fluid dynamics, J. Reine. Angew. Math., 2003, 563:197-220. [11] Hung C., Lee M., The boundedness of Calderón-Zygmund operators by wavelet characterization, Acta Mathematica Sinica, English Series, 2012, 28:1237-1248. [12] Izuki M., Herz and amalgam spaces with variable exponent, the Haar wavelets and greediess of the wavelet system, East. J. Approx., 2009, 15:87-109. [13] Izuki M., Boundededness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 2009, 13:243-253. [14] Izuki M., Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent, Glasnik Mat., 2010, 45:475-503. [15] Izuki M., Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 2010, 40:343-355. [16] Izuki M., Boundedness of commutators on Herz spaces with variable exponent, Rend. Cir. Mat. Palermo, 2010, 59:199-213. [17] Izuki M., Boundedness of sublinear operators on Herz spaces with variable exponent and applications to wavelet characterization, Anal. Math., 2010, 36:33-50. [18] Izuki M., Noi T., Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016, Article ID 199(2016). [19] Izuki M., Noi T., An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 2017, 11:799-816. [20] Kopaliani T. S., Infimal convolution and Muckenhoupt Ap(·) condition in variable Lp spaces, Arch. Math., 2007, 2:185-192. [21] Karlovich A. Y., Lerner A. K., Commutators of singular integrals on generalized Lp spaces with variable exponent, Publ. Mat., 2005, 49:111-125. [22] Kokilashvili V., Meskhi A., Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Arm. J. Math., 2008, 1:18-28. [23] Ková?ik O., Rákosník J., On spaces Lp(x) and wk,p(x), Czechoslovak Math. J., 1991, 41:592-618. [24] Kokilashvili V., Samko S., Singular integrals in weighted Lebesgue spaces with variable exponent, Georgian Math. J., 2003, 1:145-156. [25] Lan J., Weak type endpoint estimates for multilinear θ-type Calderón-Zygmund operators, Acta Mathematicae Applicatae Sinica, English Series, 2005, 21:615-622. [26] Lu S., Xu L., Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces, Hokkaido Math. J., 2005, 34:299-314. [27] Lu S., Yang D., Hardy-Littlewood-Sobolev theorems of fractional intergration on Herz-type spaces and its applications, Canad. J. Math., 1996, 48:363-380. [28] Lu S., Yang D., Hu G., Herz type spaces and their applications, Science Press, Beijing, 1996. [29] Lin Y., Zhang G., Weighted estimates for commutators of strongly singular Calderón-Zygmund operators, Acta Mathematica Sinica, English Series, 2016, 32:1297-1311. [30] Nekvinda A., Hardy-Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl. J., 2004, 7:255-265. [31] Quek T., Yang D.,On weighted weak hardy spaces over Rn, Acta Math. Sinica, English Series, 2000, 16:141-160. [32] Ri C., Zhang Z., Boundedness of θ-type Calderón-Zygmund operators on Hardy spaces with non-doubling measures, Journal of inequalities and Applications, 2015, 323:1-10. [33] Ri C., Zhang Z., Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure spaces, Front. Math. China, 2016, 11:141-153. [34] Tao S., Li L., Boundedness of Marcinkiewicz integrals and commutators on Morrey spaces with variable exponent, Chinese Journal of Contemporary Mathematics, 2016, 37:53-68. [35] Vagif S., Hasanov Javanshir J., Xayyam B. A., Maximal and singular integral operators and their commutators on generalized weighted Morrey spaces with variable exponent, Mathematical Inequalities and Applications, 2018, 1:41-61. [36] Wang H., Boundedness of θ-type Calderón-zygmund operators and commutators in the generalized weighted weak Morrey spaces, Journal of Function Spaces, 2016, Article ID 1309348. [37] Wang L., Tao S., Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent, J. Inequal. Appl., 2014, 227:1-17. [38] Wang L., Tao S., Parameterized Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, Anal. Theory Appl., 2015, 31:13-24. [39] Wang L., Tao S., Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponent, Turkish J. Math., 2016, 40:122-145. [40] Xie R., Shu L., On multilinear commutators of θ-type Calderón-Zygmund operators, Analysis in Theory and Applications, 2008, 24:260-270. [41] Xie R., Shu L., Lp boundedness of for the maximal multilinear singular integral operator of θ-type Calderón-Zygmund kernel, J. Sys. Sci. and Math. Scis., 2009, 29:519-526. [42] Yabuta K., Generalizations of Calderón-Zygmund operators, Studia Mathematica, 1985, 82:17-31. [43] Zhang P., Xu H., Sharp weighted estimates for commutators of Calderón-Zygmund operators type operators, Acta Mathematica Sinica, 2005, 48:625-636.
|
[1] | 宋乃琪, 赵纪满. Heisenberg型群上的仿积算子[J]. 数学学报, 2016, 59(4): 433-450. | [2] | 徐景实, 周放军. 非双倍测度空间上的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1001-1012. | [3] | 谌稳固;韩永生;苗长兴;. Calderón-Zygmund算子在H_b~p空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2008, 51(3): 487-492. | [4] | 张璞;徐罕. Calderón-Zygmund型算子交换子的加权尖锐估计[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 625-636. | [5] | 唐林;杨大春. 多线性算子在Herz型Hardy空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2001, 44(5): 861-868. | [6] | QUEK Tong Seng;杨大春. R~n上加权弱Hardy空间中的Calderón-Zygmund型算子[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 517-526. | [7] | 邓东皋;韩永生. Lipschitz曲线上的Besov空间和Triebel-Lizorkin空间(Ⅱ)——Calderón-Zygmund算子与空间的刻划[J]. Acta Mathematica Sinica, English Series, 1993, 36(1): 122-135. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23408
Minkowski空间的等价性定理及在Finsler几何的应用李明重庆理工大学理学院重庆400054OnEquivalenceTheoremsofMinkowskiSpacesandApplicationsinFinslerGeometryMingLISchoolofScience,Chongqin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Morrey空间上Marcinkiewicz积分与R陶双平,逯光辉西北师范大学数学与统计学院兰州730070CommutatorsofMarcinkiewiczIntegralswithRBMO()onMorreySpacesShuangPingTAO,GuangHuiLUCollegeof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27b(2)空间及b(2)空间上的等距映射王瑞东,王普天津理工大学理学院天津300384b(2)SpaceandIsometriesonb(2)SpacesRuiDongWANG,PuWANGCollegeofSciences,TianjinUniversityofTechnology,Tianjin3 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27模糊距离空间中几类非线性压缩不动点定理樊菁菁1,贺飞2,路宁21电子科技大学基础与前沿研究院,成都610054;2内蒙古大学数学科学学院,呼和浩特010021SomeFixedPointTheoremsforNonlinearContractionsinFuzzyMetricSpacesFANJin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27本质上是Banach空间闭凸子集的凸度量空间旷华武贵州大学数学与统计学院,贵阳550025ConvexMetricSpaceswhichAreEssentiallyClosedConvexSubsetsofBanachSpacesKUANGHuawuCollegeofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27从Hardy空间到Bloch空间的Volterra型复合算子李腾飞汕尾职业技术学院信息工程系,汕尾516600Volterra-typeCompositionOperatorsfromHardySpacesintoBloch-typeSpacesLITengfeiDepartmentofInform ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有内部控制和边界观测具有时滞的单管热交换方程的指数稳定性郑福1,聂坤1,郭宝珠21.渤海大学数理学院数学系,锦州121013;2.中国科学院系统科学与数学研究院,北京100190HeatExchangerEquationwithInnerControlfourandBoundaryObservat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于生灭过程的多斑块毒杂草入侵模型及空间模拟刘华1,杨鹏1,谢梅1,冶建华1,马明1,魏玉梅21.西北民族大学数学与计算机科学学院,兰州730030;2.西北民族大学实验中心,兰州730030MultipatchesPoisonousWeedsInvasionModelandSpaceSimulat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间四阶-时间分数阶扩散波方程的一个新的数值分析方法胡秀玲1,张鲁明21.江苏师范大学数学与统计学院,徐州221116;2.南京航空航天大学理学院,南京210016ANewNumericalMethodforFourth-orderFractionalDiffusion-waveSystemHUXi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|