摘要利用无界Hamilton算子导出的二次算子族,本文研究了一类无界Hamilton算子根向量组的Schauder基性质.首先,建立了无界Hamilton算子的根向量与相应的二次算子族的根向量之间的关系.其次,借助二次算子族谱的相关性质,刻画了无界Hamilton算子的本征值分布以及本征值的代数指标,并得到了无界Hamilton算子的根向量组是某个Hilbert空间的一个块状Schauder基的充要条件.最后,将所得结果应用于矩形薄板弯曲问题. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-10-29 | | 基金资助:国家自然科学基金(11861048,11761029);高等学校青年科技英才计划项目(NJYT-15-B03);内蒙古自治区自然科学基金(2016MS0105)及“草原英才”工程青年科技创新人才资助项目
| 通讯作者:侯国林E-mail: smshgl@imu.edu.cn | 作者简介: 乔艳芬,E-mail:yanfenqiao@mail.imu.edu.cn;阿拉坦仓,E-mail:alatanca@imu.edu.cn |
[1] Adamjan V., Pivovarchik V., Tretter C., On a class of non-self-adjoint quadratic matrix operator pencils arising in elasticity theory, J. Operat. Theor., 2002, 47(2):325-341. [2] Bai E., Chen A., On feasibility of variable separation method based on Hamiltonian system for a class of plate bending equations, Commun. Theor. Phys., 2010, 53(3):569-574. [3] Chen A., Zhang H. Q., Zhong W. X., Pseudo-division algorithm for matrix multivariable polynomial and its application, Appl. Math. Mech. Engl. Ed., 2000, 21(7):733-740. [4] Chugunova M., Pelinovsky, D., On quadratic eigenvalue problems arising in stability of discrete vortices, Linear Algebra Appl., 2009, 431(5):962-973. [5] Cvetkovic-Ilic D. S., Pavlovic V., Drazin invertibility of upper triangular operator matrices, Linear Multilinear Algebra, 2018, 66(2):260-267. [6] Dong J., Cao X. H., Liu J. H., a-Weyl's theorem and its perturbations. Acta Math. Sinica, Chin. Ser., 2017, 60(6):1013-1024. [7] Eckhardt J., Kostenko A., Quadratic operator pencils associated with the conservative Camassa-Holm flow, Bull. Soc. Math. France, 2017, 145(1):47-95. [8] Fabian M., Habala P., Hájek P., et al., Banach Space Theory:The Basis for Linear and Nonlinear Analysis, Springer, New York, 2011, pp.182. [9] Hasanov M., The spectra of two-parameter quadratic operator pencils, Math. Comput. Model., 2011, 54(1-2):742-755. [10] He J. H., Semi-inverse method and generalized variational principles with multn-variables in elasticity, Appl. Math. Mech. Engl. Ed., 2000, 21(7):797-808. [11] Hou G. L., Chen A., Symplectic eigenfunction expansion theorem for elasticity of rectangular planes with two simply-supported opposite sides, Appl. Math. Mech. Engl. Ed., 2010, 31(10):1241-1250. [12] Hou G. L., Chen A., Completeness of generalized eigenfunction systems of infinite-dimensional Hamiltonian operators and its application in Elasticity (in Chinese), Sci. China Math., 2012, 42(1):57-68. [13] Huang J. J., Chen A., Fan X. Y., Structure of the spectrum of infinite dimensional Hamiltonian operators (in Chinese), Sci. China Ser. A, Math., 2008, 38(1):71-78. [14] Huang J., Liu J., Chen A., Symmetry of the quadratic numerical range and spectral inclusion properties of Hamiltonian operator matrices, Math. Notes, 2018, 103(5-6):1007-1013. [15] Koyunbakan H., Inverse problem for a quadratic pencil of Sturm-Liouville operator, J. Math. Anal. Appl., 2011, 378(2):549-554. [16] Kurylev Y., Lassas M., Gelf' and inverse problem for a quadratic operator pencil, J. Funct. Anal., 2000, 176(2):247-263. [17] Lim C. W., Cui S., Yao W. A., On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported, Int. J. Solids Struct., 2007, 44(16):5396-5411. [18] Liu H. M., Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method, Chaos Soliton Fract., 2005, 23(2):573-576. [19] Manafov M. D., Kablan A., On a quadratic pencil of differential operators with periodic generalized potential, Int. J. Pure Appl. Math., 2009, 50(4):515-522. [20] Markus A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Rhode Island, 1988. [21] Miloslavskii A. I., Spectral properties of a class of quadratic operator pencils, Funct. Anal. Appl., 1981, 15(2):142-144. [22] Möller M., Pivovarchik V., Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications, Springer International Publishing, Switzerland, 2015. [23] Pester C., Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problems, J. Integral. Equ. Appl., 2005, 17(1):71-89. [24] Pivovarchik V. N., Eigenvalues of a certain quadratic pencil of operators, Funct. Anal. Appl., 1989, 23(1):70-72. [25] Rasulov T. H., Tretter C., Spectral inclusion for unbounded diagonally dominant n×n operator matrices, Rocky Mountain J. Math., 2018, 48(1):279-324. [26] Shkalikov A. A., Property of the eigenvectors of quadratic operator pencils of being a basis, Math. Notes., 1981, 30(3):676-684. [27] Smirnov V. V., Manevitch L. I., Semi-inverse method in nonlinear mechanics:application to couple shell and beam-type oscillations of single-walled carbon nanotubes, Nonlinear. Dynam., 2018, 93(1):205-218. [28] Song K., Hou G. L., Chen A., Block basis property of a class of 2×2 operator matrices and its application to elasticity, Chin. Phys. B., 2013, 22(9):094601. [29] Tretter C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008. [30] Wang H., Chen A., Huang J. J., Completeness of system of root vectors of upper triangular infinitedimensional Hamiltonian operators appearing in elasticity theory, Appl. Math. Mech. Engl. Ed., 2012, 33(3):385-398. [31] Wu D. Y., Chen A., Completeness for root vectors system of a class of unbounded operator matrices (in Chinese), Sci. China. Math., 2016, 46(4):439-450. [32] Wu L., Wang Q. S., Elishakoff I., Semi-inverse method for axially functionally graded beams with an antisymmetric vibration mode, J. Sound. Vib., 2005, 284(3-5):1190-1202. [33] Xing L. G., Chen A., The scatter of spectrum of quadrator operator pencil and nonnegative infinite dimensional Hamiltonian operator, Acta Math. Sinica, Chin. Ser., 2012, 55(4):665-672. [34] Xing L. G., Chen A., The spectral description for a class of infinite dimensional Hamiltonian operator (in Chinese), Acta. Math. Appl. Sin., Chin. Ser., 2014, 37(4):577-585. [35] Yakubov Y., Two-fold completeness of root vectors of a system of quadratic pencils, J. Math. Pures Appl., 2005, 84(10):1427-1454. [36] Yao W. A., Sui Y. F., Symplectic solution system for Reissner plate bending, Appl. Math. Mech. Engl. Ed., 2004, 25(2):178-185. [37] Yao W. A., Zhong W. X., Symplectic Elasticity (in Chinese), Dalian University of Technology Press, Dalian, 1995. [38] Yao W. A., Zhong W. X., Su B., New solution system for circular sector plate bending and its application, Acta. Mech. Solida. Sin., 1999, 12(4):307-315. [39] Zhang H. Q., Chen A., Zhong W. X., The Hamiltonian system and completeness of symplectic orthogonal system, Appl. Math. Mech. Engl. Ed., 1997, 18(3):237-242. [40] Zhang H. Y., Du H. K., A note on Browder spectra of upper-triangular operator matrices (in Chinese), Adv. Math., 2013, 42(5):706-712. [41] Zhong W. X., Method of separation of variables and Hamiltonian system (in Chinese), Computational Stuctulal Mechanics and Applications, 1991, 8(3):229-240. [42] Zhong W. X., A New Systematic Methodology for Theory of Elasticity (in Chinese), Dalian University of Technology Press, Dalian, 1995.
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23452
广义映射Schrdinger-Virasoro代数的二上同调群王松,王晓明上海海洋大学信息学院上海201306SecondCohomologyGroupsoftheGeneralizedMapSchrdinger-VirasoroAlgebrasSongWANGXiao,Mi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27李Rinehart代数的子代数若干性质王雪冰1,牛艳君2,陈良云31松原职业技术学院基础部松原138001;2长春工程学院理学院长春130024;3东北师范大学数学与统计学院长春130024SomePropertiesofSubalgebrasofLie-RinehartAlgebrasXueBin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于弱Hopf代数的半单范畴的构造张晓辉,吴慧曲阜师范大学数学科学学院曲阜273165ConstructionofSemisimpleCategoriesoverWeakHopfAlgebrasXiaoHui,ZHANGHuiWUSchoolofMathematicalScience,QufuNor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27型C-Z算子在加权变指数Morrey空间上的有界性杨沿奇,陶双平西北师范大学数学与统计学院兰州730070Boundednessof-typeC-ZOperatorsonWeightedVariableExponentMorreySpacesYanQiYANG,Shuan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27奇异积分算子q-变差的定量最优加权估计程旺,马涛武汉大学数学与统计学院武汉430070QuantitativeandSharpWeightedEstimatesforq-VariationsofSingularOperatorsWangCHENG,TaoMASchoolofMathematicsan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27冯诺依曼代数的可测算子的性质沈丛丛1,2,蒋立宁2,王利广31.北京物资学院信息学院北京101149;2.北京理工大学数学与统计学院北京100081;3.曲阜师范大学数学科学学院曲阜273165PropertiesofMeasurableOperatorsAssociatedwith ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类含有p-Laplacian算子的脉冲微分方程解的存在性和多重性姚旺进应用数学福建省高校重点实验室,莆田学院数学与金融学院,莆田351100ExistenceandMultiplicityofSolutionsforaClassofImpulsiveDifferentialEquationswit ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27线性互补问题模系多重网格方法的AMSOR光滑算子张丽丽河南财经政法大学数学与信息科学学院,郑州,450046OnAMSORSmootherinModulus-BasedMultigridMethodforLinearComplementarityProblemsZHANGLiliSchoolofMa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|