删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于二次算子族的无界Hamilton算子根向量组的基性质

本站小编 Free考研考试/2021-12-27

基于二次算子族的无界Hamilton算子根向量组的基性质 乔艳芬, 侯国林, 阿拉坦仓1. 内蒙古大学数学科学学院 呼和浩特 010021;
2. 呼和浩特民族学院 呼和浩特 010051 The Basis Property of Root Vector Systems of Unbounded Hamiltonian Operators via Quadratic Operator Pencils Yan Fen QIAO, Guo Lin HOU, Alatancang1. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China;
2. Hohhot Minzu College, Hohhot 010051, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(660 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要利用无界Hamilton算子导出的二次算子族,本文研究了一类无界Hamilton算子根向量组的Schauder基性质.首先,建立了无界Hamilton算子的根向量与相应的二次算子族的根向量之间的关系.其次,借助二次算子族谱的相关性质,刻画了无界Hamilton算子的本征值分布以及本征值的代数指标,并得到了无界Hamilton算子的根向量组是某个Hilbert空间的一个块状Schauder基的充要条件.最后,将所得结果应用于矩形薄板弯曲问题.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-10-29
MR (2010):O175.3
O175.9
基金资助:国家自然科学基金(11861048,11761029);高等学校青年科技英才计划项目(NJYT-15-B03);内蒙古自治区自然科学基金(2016MS0105)及“草原英才”工程青年科技创新人才资助项目
通讯作者:侯国林E-mail: smshgl@imu.edu.cn
作者简介: 乔艳芬,E-mail:yanfenqiao@mail.imu.edu.cn;阿拉坦仓,E-mail:alatanca@imu.edu.cn
引用本文:
乔艳芬, 侯国林, 阿拉坦仓. 基于二次算子族的无界Hamilton算子根向量组的基性质[J]. 数学学报, 2019, 62(4): 613-632. Yan Fen QIAO, Guo Lin HOU, Alatancang. The Basis Property of Root Vector Systems of Unbounded Hamiltonian Operators via Quadratic Operator Pencils. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 613-632.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/613


[1] Adamjan V., Pivovarchik V., Tretter C., On a class of non-self-adjoint quadratic matrix operator pencils arising in elasticity theory, J. Operat. Theor., 2002, 47(2):325-341.
[2] Bai E., Chen A., On feasibility of variable separation method based on Hamiltonian system for a class of plate bending equations, Commun. Theor. Phys., 2010, 53(3):569-574.
[3] Chen A., Zhang H. Q., Zhong W. X., Pseudo-division algorithm for matrix multivariable polynomial and its application, Appl. Math. Mech. Engl. Ed., 2000, 21(7):733-740.
[4] Chugunova M., Pelinovsky, D., On quadratic eigenvalue problems arising in stability of discrete vortices, Linear Algebra Appl., 2009, 431(5):962-973.
[5] Cvetkovic-Ilic D. S., Pavlovic V., Drazin invertibility of upper triangular operator matrices, Linear Multilinear Algebra, 2018, 66(2):260-267.
[6] Dong J., Cao X. H., Liu J. H., a-Weyl's theorem and its perturbations. Acta Math. Sinica, Chin. Ser., 2017, 60(6):1013-1024.
[7] Eckhardt J., Kostenko A., Quadratic operator pencils associated with the conservative Camassa-Holm flow, Bull. Soc. Math. France, 2017, 145(1):47-95.
[8] Fabian M., Habala P., Hájek P., et al., Banach Space Theory:The Basis for Linear and Nonlinear Analysis, Springer, New York, 2011, pp.182.
[9] Hasanov M., The spectra of two-parameter quadratic operator pencils, Math. Comput. Model., 2011, 54(1-2):742-755.
[10] He J. H., Semi-inverse method and generalized variational principles with multn-variables in elasticity, Appl. Math. Mech. Engl. Ed., 2000, 21(7):797-808.
[11] Hou G. L., Chen A., Symplectic eigenfunction expansion theorem for elasticity of rectangular planes with two simply-supported opposite sides, Appl. Math. Mech. Engl. Ed., 2010, 31(10):1241-1250.
[12] Hou G. L., Chen A., Completeness of generalized eigenfunction systems of infinite-dimensional Hamiltonian operators and its application in Elasticity (in Chinese), Sci. China Math., 2012, 42(1):57-68.
[13] Huang J. J., Chen A., Fan X. Y., Structure of the spectrum of infinite dimensional Hamiltonian operators (in Chinese), Sci. China Ser. A, Math., 2008, 38(1):71-78.
[14] Huang J., Liu J., Chen A., Symmetry of the quadratic numerical range and spectral inclusion properties of Hamiltonian operator matrices, Math. Notes, 2018, 103(5-6):1007-1013.
[15] Koyunbakan H., Inverse problem for a quadratic pencil of Sturm-Liouville operator, J. Math. Anal. Appl., 2011, 378(2):549-554.
[16] Kurylev Y., Lassas M., Gelf' and inverse problem for a quadratic operator pencil, J. Funct. Anal., 2000, 176(2):247-263.
[17] Lim C. W., Cui S., Yao W. A., On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported, Int. J. Solids Struct., 2007, 44(16):5396-5411.
[18] Liu H. M., Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method, Chaos Soliton Fract., 2005, 23(2):573-576.
[19] Manafov M. D., Kablan A., On a quadratic pencil of differential operators with periodic generalized potential, Int. J. Pure Appl. Math., 2009, 50(4):515-522.
[20] Markus A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Rhode Island, 1988.
[21] Miloslavskii A. I., Spectral properties of a class of quadratic operator pencils, Funct. Anal. Appl., 1981, 15(2):142-144.
[22] Möller M., Pivovarchik V., Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications, Springer International Publishing, Switzerland, 2015.
[23] Pester C., Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problems, J. Integral. Equ. Appl., 2005, 17(1):71-89.
[24] Pivovarchik V. N., Eigenvalues of a certain quadratic pencil of operators, Funct. Anal. Appl., 1989, 23(1):70-72.
[25] Rasulov T. H., Tretter C., Spectral inclusion for unbounded diagonally dominant n×n operator matrices, Rocky Mountain J. Math., 2018, 48(1):279-324.
[26] Shkalikov A. A., Property of the eigenvectors of quadratic operator pencils of being a basis, Math. Notes., 1981, 30(3):676-684.
[27] Smirnov V. V., Manevitch L. I., Semi-inverse method in nonlinear mechanics:application to couple shell and beam-type oscillations of single-walled carbon nanotubes, Nonlinear. Dynam., 2018, 93(1):205-218.
[28] Song K., Hou G. L., Chen A., Block basis property of a class of 2×2 operator matrices and its application to elasticity, Chin. Phys. B., 2013, 22(9):094601.
[29] Tretter C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
[30] Wang H., Chen A., Huang J. J., Completeness of system of root vectors of upper triangular infinitedimensional Hamiltonian operators appearing in elasticity theory, Appl. Math. Mech. Engl. Ed., 2012, 33(3):385-398.
[31] Wu D. Y., Chen A., Completeness for root vectors system of a class of unbounded operator matrices (in Chinese), Sci. China. Math., 2016, 46(4):439-450.
[32] Wu L., Wang Q. S., Elishakoff I., Semi-inverse method for axially functionally graded beams with an antisymmetric vibration mode, J. Sound. Vib., 2005, 284(3-5):1190-1202.
[33] Xing L. G., Chen A., The scatter of spectrum of quadrator operator pencil and nonnegative infinite dimensional Hamiltonian operator, Acta Math. Sinica, Chin. Ser., 2012, 55(4):665-672.
[34] Xing L. G., Chen A., The spectral description for a class of infinite dimensional Hamiltonian operator (in Chinese), Acta. Math. Appl. Sin., Chin. Ser., 2014, 37(4):577-585.
[35] Yakubov Y., Two-fold completeness of root vectors of a system of quadratic pencils, J. Math. Pures Appl., 2005, 84(10):1427-1454.
[36] Yao W. A., Sui Y. F., Symplectic solution system for Reissner plate bending, Appl. Math. Mech. Engl. Ed., 2004, 25(2):178-185.
[37] Yao W. A., Zhong W. X., Symplectic Elasticity (in Chinese), Dalian University of Technology Press, Dalian, 1995.
[38] Yao W. A., Zhong W. X., Su B., New solution system for circular sector plate bending and its application, Acta. Mech. Solida. Sin., 1999, 12(4):307-315.
[39] Zhang H. Q., Chen A., Zhong W. X., The Hamiltonian system and completeness of symplectic orthogonal system, Appl. Math. Mech. Engl. Ed., 1997, 18(3):237-242.
[40] Zhang H. Y., Du H. K., A note on Browder spectra of upper-triangular operator matrices (in Chinese), Adv. Math., 2013, 42(5):706-712.
[41] Zhong W. X., Method of separation of variables and Hamiltonian system (in Chinese), Computational Stuctulal Mechanics and Applications, 1991, 8(3):229-240.
[42] Zhong W. X., A New Systematic Methodology for Theory of Elasticity (in Chinese), Dalian University of Technology Press, Dalian, 1995.

[1]邢利刚, 阿拉坦仓. 二次算子族及非负无穷维Hamilton算子的谱分布[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 665-672.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23452
相关话题/数学 算子 科学学院 代数 指标