删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法

本站小编 Free考研考试/2021-12-27

Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法 蔡钢重庆师范大学数学科学学院 重庆 401331 Viscosity Iterative Algorithms for a New Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces Gang CAISchool of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(465 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文在Hilbert空间上引入了一个新的粘性迭代算法,找到了关于两个逆强单调算子的变分不等式问题的解集与非扩张映射的不动点集的公共元.通过修改的超梯度算法,得到了强收敛定理,也给出了一个数值例子.所得结果改进了许多最新结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-02-10
MR (2010):O177.91
基金资助:国家自然科学基金(11401063,11771063);重庆市自然科学基金(cstc2017jcyjAX0006);重庆市教委项目(KJ1703041);重庆市高等学校青年骨干教师资助计划(020603011714);重庆师范大学青年拔尖人才计划(02030307-00024)
作者简介: E-mail:caigang-aaaa@163.com}
引用本文:
蔡钢. Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法[J]. 数学学报, 2019, 62(5): 765-776. Gang CAI. Viscosity Iterative Algorithms for a New Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 765-776.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I5/765


[1] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Stud., 1994, 63:123-145.
[2] Ceng L. C., Wang C., Yao J. C., Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., 2008, 67:375-390.
[3] Chang S. S., On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl., 1997, 216:94-111.
[4] Colao V., Marino G., Xu H. K., An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl., 2008, 344:340-352.
[5] Combettes P. L., Hirstoaga S. A., Equilibrium programming in Hilbert space, J. Nonlinear convex Anal., 2002, 6:117-136.
[6] Iiduka H., Takahashi W., Toyoda M., Approximation of solutions of variational inequalities for monotone mappings, Pan. Math. J., 2004, 14:49-61.
[7] Lim T. C., Xu H. K., Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal., 1994, 22:1345-1355.
[8] Marino G., Xu H. K., A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 2006, 318:43-52.
[9] Moudafi A., Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl., 2000, 241:46-55.
[10] Nakajo K., Takahashi W., Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 2003, 279:372-379.
[11] Noor M. A., Some algorithms for general monotone mixed variational inequalities, Math. Comput. Model., 1999, 29:1-9.
[12] Noor M. A., Some development in general variational inequalities, Appl. Math. Comput., 2004, 152:199-277.
[13] Siriyan K., Kangtunyakarn A., A new general system of variational inequalities for convergence theorem and application, Numer Algor., 2019, 81:99-123.
[14] Suzuki T., Strong convergence of Krasnoselskii and Manns type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 2005, 305:227-239.
[15] Sunthrayuth P., Kumam P., Viscosity approximation methods based on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces, Math. Comput. Modell., 2013, 58:1814-1828.
[16] Qin X., Cho Y. J., Kang S. M., Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., 2009, 225:20-30.
[17] Qin X., Lin L. J., Kang S. M., On a generalized Ky Fan inequality and asymptotically strict pseudocontractions in the intermediate sense, J. Optim. Theory. Appl., 2011, 150:553-579.
[18] Qin X., Cho Y. J., Kang S. M., Viscosity approximation methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal., 2010, 72:99-112.
[19] Xu H. K., Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 2004, 298:279-291.
[20] Yao Y., Noor M. A., On viscosity iterative methods for variational inequalities, J. Math. Anal. Appl., 2007, 325:776-787.
[21] Yao Y., Noor M. A., Noor K. I., et al., Modified extragradient methods for a system of variational inequalities in Banach spaces, Acta Appl. Math., 2010, 110:1211-1224.
[22] Zhou H., Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 2008, 69(2):456-462.
[23] Zhu D. L., Marcotte P., Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim., 1996, 6:774-726.

[1]司马傲蕾, 贺飞, 路宁. 类拟b-距离空间中几类循环压缩映射不动点定理[J]. 数学学报, 2019, 62(3): 427-440.
[2]万育基, 余志先, 孟艳玲. 状态依赖时滞非局部扩散方程的波前解[J]. 数学学报, 2019, 62(3): 479-496.
[3]林丽琼, 张云南, 朱玉灿. 无穷维Hilbert空间上框架的算子与范数[J]. 数学学报, 2017, 60(6): 911-918.
[4]张丽娟, 刘英. 无限族demi压缩映射与平衡问题的收敛定理[J]. 数学学报, 2017, 60(5): 721-730.
[5]蔡钢. 均衡问题、变分不等式问题和不动点问题的强收敛定理[J]. 数学学报, 2017, 60(4): 669-680.
[6]王玮, 侯晋川. 自伴标准算子代数上强保持k-斜交换性映射的刻画[J]. 数学学报, 2017, 60(1): 39-52.
[7]刘洁, 赵秀兰. Banach空间中带误差修改的不动点迭代逼近[J]. 数学学报, 2016, 59(6): 767-774.
[8]刘春, 刘立山. 非扩张映射具有误差修改Ishikawa迭代算法的强收敛[J]. 数学学报, 2016, 59(4): 545-560.
[9]李娟, 朱传喜. 半序度量空间中公共二元随机重合点定理及其应用[J]. 数学学报, 2016, 59(3): 343-356.
[10]唐国吉, 汪星. Banach空间上变分不等式的一个超梯度方法[J]. 数学学报, 2016, 59(2): 187-198.
[11]张克梅. 广义e-ω-凹算子的不动点及其应用[J]. 数学学报, 2016, 59(1): 107-116.
[12]黄志霞, 黄建华. 一类分裂变分不等式及其收敛算法[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 1035-1044.
[13]张丽娟, 佟慧. 不动点集和零点集公共元的强弱收敛性[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 601-612.
[14]苏华, 刘立山. 变号(k,n-k)共轭边值问题解的存在问题[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 261-270.
[15]朴勇杰. 锥度量空间上混合型膨胀映射族的唯一公共不动点[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1041-1046.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23495
相关话题/数学 空间 公共 重庆师范大学 交换