摘要设AT(Δ)是单位圆盘Δ上所有渐近Teichmüller等价类[[μ]]或[[fμ]]构成的渐近Teichmüller空间.本文证明了对AT(Δ)内的任意渐近极值的fμ,总存在一个[[fμ]]内的渐近极值映射gν,使边界伸缩商h*(μf?g-1(g(z))})≠0.同时也获得了AT(Δ)在基点处的切空间上的类似结果. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2017-07-05 | | 基金资助:国家自然科学基金资助项目(11571362,11371045)
| 通讯作者:周泽民E-mail: zzm@ruc.edu.cn | 作者简介: 黄志勇,E-mail:huangzhiy@ruc.edu.cn |
[1] Ahlfors L. V., Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966. [2] Bo?in V., Lakic N., Markovi? V., et al., Unique extremality, J. Anal. Math., 1998, 75:299-338. [3] Earle C. J., Gardiner F. P., Lakic N., Asymptotic Teichmüller spaces. Part I. The complex structure, Contemp. Math., 2000, 256:17-38. [4] Earle C. J., Gardiner F. P., Lakic N., Asymptotic Teichmüller spaces, Part Ⅱ, the metric structure, Contemp. Math., 2004, 355:187-219. [5] Earle C. J., Kra I., Krushkal S., Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc., 1994, 343:927-948. [6] Earle C. J., Li Z., Isometrically embedded polydisks in infinite dimensional Teichmüller spaces, J. Geom. Anal., 1999, 9:51-71. [7] Earle C. J., Markovic V., Saric D., Barycentric extension and the Bers embedding for asymptotic Teichmüller spaces, Contemp. Math., 2002, 311:85-105. [8] Fan J., On geodesics in asymptotic Teichmüller spaces, Math. Z., 2011, 267:767-779. [9] Fletcher A., On asymptotic Teichmüller space, Trans. Amer. Math. Soc., 2010, 362(5):2507-2523. [10] Fletcher A., Markovic V., Quasiconformal Maps and Teichmüller Theory, Oxford University Press, New York, 2007. [11] Gardiner F. P., Lakic N., Quasiconformal Teichmüller Spaces, Math. Surveys and Monographs, Vol. 76, American Mathematical Society, Providence, 2000. [12] Gardiner F. P., Sullivan D. P., Symmetric structures on a closed curve, Amer. J. Math., 1992, 114:683-736. [13] Lakic N., Substantial boundary points for plane domains and Gardiner's conjecture, Ann. Acad. Sci. Fenn. Math., 2000, 25:285-306. [14] Li Z., Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces, Complex Var. Theory Appl., 1991, 16:261-272. [15] Li Z., Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces Ⅱ, Ann. Acad. Sci. Fenn. Ser. A I Math., 1993, 18:355-367. [16] Li Z., Non-convexity of spheres in infinite-dimensional Teichmüller spaces, Sci. China Ser. A, 1994, 37:924-932. [17] Li Z., A note on geodesics in infinite-dimensional Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. A I Math., 1995, 20:301-313. [18] Li Z., Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmüller spaces, Proc. Amer. Math. Soc., 1996, 124:1459-1465. [19] Miyachi H., On invariant distances on asymptotic Teichmüller spaces, Proc. Amer. Math. Soc., 2006, 134:1917-1925. [20] Miyachi H., Image of asymptotic Bers map, J. Math. Soc. Japan, 2008, 60:1255-1276. [21] Qi Y., Wu Y., On nonuniqueness of geodesics and geodesic disks in the universal asymptotic Teichmüller space, Acta Math. Sin., Engl. Series, 2017, 33(2):201-209. [22] Shen Y., Some remarks on the geodesics in infinite-dimensional Teichmüller spaces, Acta Mathematica Sinica, New Series, 1997, 13(3):497-502. [23] Shen Y., On the geometry of infinite-dimensional Teichmüller spaces, Acta Mathematica Sinica, New Series, 1997, 13(3):413-420. [24] Shen Y., On Teichmüller geometry, Complex Var. Theory Appl., 2001, 44:73-83. [25] Tanigawa H., Holomorphic families of geodesic discs in infinite-dimensional Teichmüller spaces, Nagoya Math. J., 1992, 127:117-128. [26] Yao G., On infinitesimally weakly non-decreasable Beltrami differentials, arXiv:1610.09313. [27] Zhou Z., On extremal quasiconformal mapping of landslide type, Chinese J. Contemporary Math., 2011, 32:279-284. [28] Zhou Z., Chen J., On geodesics in asymptotic universal Teichmüller space, Proc. Edin. Math. Soc., 2016, 59(4):1065-1074.
|
[1] | 唐树安, 吴冲, 冯小高. Grunsky算子的本性模[J]. 数学学报, 2017, 60(2): 253-260. | [2] | Yi QI, Yan WU. On Nonuniqueness of Geodesics and Geodesic Disks in the Universal Asymptotic Teichmüller Space[J]. Acta Mathematica Sinica, English Series, 2017, 33(2): 201-209. | [3] | 赵全庭, 饶胜. 黎曼面局部Torelli定理的新证明[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 781-796. | [4] | 褚玉明;蒋月评;方爱农;. 外部边界球可达域上拟共形映射的Lipschitz连续性[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1207-121. | [5] | 刘立新;张朝晖;. 一类曲面映射类的分解[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1141-115. | [6] | 褚玉明;方爱农. 具有n次梯度可积函数的振荡[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 961-964. | [7] | 周泽民;陈纪修. 具有不可缩小Beltrami系数的拟共形映射[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 379-384. | [8] | 高宗升. 拟代数体函数的基本不等式及其应用[J]. Acta Mathematica Sinica, English Series, 1997, 40(6): -. | [9] | 沈玉良. Teichmuller空间的星形结构问题[J]. Acta Mathematica Sinica, English Series, 1995, 38(4): -. | [10] | 方丽萍. C~*上复动力系统[J]. Acta Mathematica Sinica, English Series, 1991, 34(5): 611-621. | [11] | 李忠. 无限型黎曼曲面上的拟共形映射[J]. Acta Mathematica Sinica, English Series, 1988, 31(3): 414-424. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23490
Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法蔡钢重庆师范大学数学科学学院重庆401331ViscosityIterativeAlgorithmsforaNewVariationalInequalityProblemandFixedPointProbleminHilbertSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多复变中正规权Zygmund空间上的几个性质黎深莲,张学军湖南师范大学数学与统计学院长沙410006SeveralPropertiesontheNormalWeightZygmundSpaceinSeveralComplexVariablesShenLianLI,XueJunZHANGCollege ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Fock空间上的Hankel算子王晓峰1,夏锦1,陈建军21.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2.肇庆学院数学与统计学院肇庆526061HankelOperatorsonGeneralizedFockSpacesXiaoFengWANG1,JinXIA1,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27类拟b-距离空间中几类循环压缩映射不动点定理司马傲蕾,贺飞,路宁内蒙古大学数学科学学院呼和浩特010021FixedPointTheoremsforSeveralCyclic-ContractiveMappingsinDislocatedQuasi-b-metricSpacesAoLeiSIMA,F ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27型C-Z算子在加权变指数Morrey空间上的有界性杨沿奇,陶双平西北师范大学数学与统计学院兰州730070Boundednessof-typeC-ZOperatorsonWeightedVariableExponentMorreySpacesYanQiYANG,Shuan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Minkowski空间的等价性定理及在Finsler几何的应用李明重庆理工大学理学院重庆400054OnEquivalenceTheoremsofMinkowskiSpacesandApplicationsinFinslerGeometryMingLISchoolofScience,Chongqin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|