删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

渐近Teichmüller空间的不唯一性

本站小编 Free考研考试/2021-12-27

渐近Teichmüller空间的不唯一性 黄志勇, 周泽民中国人民大学数学系 北京 100872 Nonuniqueness Properties on Asymptotic Teichmuller Space Zhi Yong HUANG, Ze Min ZHOUDepartment of Mathematics, Renmin University of China, Beijing 100872, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(415 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要AT(Δ)是单位圆盘Δ上所有渐近Teichmüller等价类[[μ]]或[[fμ]]构成的渐近Teichmüller空间.本文证明了对AT(Δ)内的任意渐近极值的fμ,总存在一个[[fμ]]内的渐近极值映射gν,使边界伸缩商h*μf?g-1gz))})≠0.同时也获得了AT(Δ)在基点处的切空间上的类似结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-07-05
MR (2010):O174.5
基金资助:国家自然科学基金资助项目(11571362,11371045)
通讯作者:周泽民E-mail: zzm@ruc.edu.cn
作者简介: 黄志勇,E-mail:huangzhiy@ruc.edu.cn
引用本文:
黄志勇, 周泽民. 渐近Teichmüller空间的不唯一性[J]. 数学学报, 2019, 62(5): 703-708. Zhi Yong HUANG, Ze Min ZHOU. Nonuniqueness Properties on Asymptotic Teichmuller Space. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 703-708.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I5/703


[1] Ahlfors L. V., Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.
[2] Bo?in V., Lakic N., Markovi? V., et al., Unique extremality, J. Anal. Math., 1998, 75:299-338.
[3] Earle C. J., Gardiner F. P., Lakic N., Asymptotic Teichmüller spaces. Part I. The complex structure, Contemp. Math., 2000, 256:17-38.
[4] Earle C. J., Gardiner F. P., Lakic N., Asymptotic Teichmüller spaces, Part Ⅱ, the metric structure, Contemp. Math., 2004, 355:187-219.
[5] Earle C. J., Kra I., Krushkal S., Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc., 1994, 343:927-948.
[6] Earle C. J., Li Z., Isometrically embedded polydisks in infinite dimensional Teichmüller spaces, J. Geom. Anal., 1999, 9:51-71.
[7] Earle C. J., Markovic V., Saric D., Barycentric extension and the Bers embedding for asymptotic Teichmüller spaces, Contemp. Math., 2002, 311:85-105.
[8] Fan J., On geodesics in asymptotic Teichmüller spaces, Math. Z., 2011, 267:767-779.
[9] Fletcher A., On asymptotic Teichmüller space, Trans. Amer. Math. Soc., 2010, 362(5):2507-2523.
[10] Fletcher A., Markovic V., Quasiconformal Maps and Teichmüller Theory, Oxford University Press, New York, 2007.
[11] Gardiner F. P., Lakic N., Quasiconformal Teichmüller Spaces, Math. Surveys and Monographs, Vol. 76, American Mathematical Society, Providence, 2000.
[12] Gardiner F. P., Sullivan D. P., Symmetric structures on a closed curve, Amer. J. Math., 1992, 114:683-736.
[13] Lakic N., Substantial boundary points for plane domains and Gardiner's conjecture, Ann. Acad. Sci. Fenn. Math., 2000, 25:285-306.
[14] Li Z., Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces, Complex Var. Theory Appl., 1991, 16:261-272.
[15] Li Z., Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces Ⅱ, Ann. Acad. Sci. Fenn. Ser. A I Math., 1993, 18:355-367.
[16] Li Z., Non-convexity of spheres in infinite-dimensional Teichmüller spaces, Sci. China Ser. A, 1994, 37:924-932.
[17] Li Z., A note on geodesics in infinite-dimensional Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. A I Math., 1995, 20:301-313.
[18] Li Z., Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmüller spaces, Proc. Amer. Math. Soc., 1996, 124:1459-1465.
[19] Miyachi H., On invariant distances on asymptotic Teichmüller spaces, Proc. Amer. Math. Soc., 2006, 134:1917-1925.
[20] Miyachi H., Image of asymptotic Bers map, J. Math. Soc. Japan, 2008, 60:1255-1276.
[21] Qi Y., Wu Y., On nonuniqueness of geodesics and geodesic disks in the universal asymptotic Teichmüller space, Acta Math. Sin., Engl. Series, 2017, 33(2):201-209.
[22] Shen Y., Some remarks on the geodesics in infinite-dimensional Teichmüller spaces, Acta Mathematica Sinica, New Series, 1997, 13(3):497-502.
[23] Shen Y., On the geometry of infinite-dimensional Teichmüller spaces, Acta Mathematica Sinica, New Series, 1997, 13(3):413-420.
[24] Shen Y., On Teichmüller geometry, Complex Var. Theory Appl., 2001, 44:73-83.
[25] Tanigawa H., Holomorphic families of geodesic discs in infinite-dimensional Teichmüller spaces, Nagoya Math. J., 1992, 127:117-128.
[26] Yao G., On infinitesimally weakly non-decreasable Beltrami differentials, arXiv:1610.09313.
[27] Zhou Z., On extremal quasiconformal mapping of landslide type, Chinese J. Contemporary Math., 2011, 32:279-284.
[28] Zhou Z., Chen J., On geodesics in asymptotic universal Teichmüller space, Proc. Edin. Math. Soc., 2016, 59(4):1065-1074.

[1]唐树安, 吴冲, 冯小高. Grunsky算子的本性模[J]. 数学学报, 2017, 60(2): 253-260.
[2]Yi QI, Yan WU. On Nonuniqueness of Geodesics and Geodesic Disks in the Universal Asymptotic Teichmüller Space[J]. Acta Mathematica Sinica, English Series, 2017, 33(2): 201-209.
[3]赵全庭, 饶胜. 黎曼面局部Torelli定理的新证明[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 781-796.
[4]褚玉明;蒋月评;方爱农;. 外部边界球可达域上拟共形映射的Lipschitz连续性[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1207-121.
[5]刘立新;张朝晖;. 一类曲面映射类的分解[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1141-115.
[6]褚玉明;方爱农. 具有n次梯度可积函数的振荡[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 961-964.
[7]周泽民;陈纪修. 具有不可缩小Beltrami系数的拟共形映射[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 379-384.
[8]高宗升. 拟代数体函数的基本不等式及其应用[J]. Acta Mathematica Sinica, English Series, 1997, 40(6): -.
[9]沈玉良. Teichmuller空间的星形结构问题[J]. Acta Mathematica Sinica, English Series, 1995, 38(4): -.
[10]方丽萍. C~*上复动力系统[J]. Acta Mathematica Sinica, English Series, 1991, 34(5): 611-621.
[11]李忠. 无限型黎曼曲面上的拟共形映射[J]. Acta Mathematica Sinica, English Series, 1988, 31(3): 414-424.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23490
相关话题/空间 数学 系统 结构 中国人民大学