摘要经典量子系统的哈密尔顿是自伴算子.哈密尔顿算符的自伴性不仅确保了系统遵循酉演化,而且也保证了它自身具有实的能量本征值.但是,确实有一些物理系统,其哈密尔顿是非自伴的,但也具有实的能量本征值.这种具有非自伴哈密尔顿的系统就是非自伴量子系统.具有伪自伴哈密尔顿的系统是一类特殊的非自伴量子系统,其哈密尔顿相似于一个自伴算子.本文研究伪自伴量子系统的酉演化与绝热定理.首先,给出了伪自伴算子定义及其等价刻画;其次,对于伪自伴哈密尔顿系统,通过构造新内积,证明了伪自伴哈密尔顿在新内积下是自伴的,并给出了系统在新内积下为酉演化的充分必要条件.最后,建立了伪自伴量子系统的绝热演化定理及与绝热逼近定理. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-05-11 | | 基金资助:国家自然科学基金(11871318,11771009,11601300,11571213);中央高校基本科研业务费专项资金(GK20181020,GK201801011)及陕西省自然科学基础研究计划(2018JM1020)
| 通讯作者:曹怀信E-mail: caohx@snnu.edu.cn | 作者简介: 黄永峰,E-mail:huangyongfeng@snnu.edu.cn;王文华,E-mail:wenhua@snnu.edu.cn |
[1] Ashok D., Pseudo-Hermitian quantum mechanics, J. Phys. Conf. Ser., 2011, 287(1):012002. [2] Bender C. M., Boettcher S., Real spectra in non-Hermitian Hamiltonians having P T -symmetry, Phys. Rev. Lett., 1998, 80(24):5243-5246. [3] Bender C. M., Berry M. V., Mandilara A., Generalized P T -symmetry and real spectra, J. Phys. A:Math. Gen., 2002, 35(31):L467-L471. [4] Bender C. M., Brody D. C., Jones H. F., Must a Hamiltonian be Hermitian? Amer. J. Phys., 2003, 71(11):1095-1102. [5] Bender C. M., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 2007, 70:947-1018. [6] Born M., Fock V., Beweis des adiabatensatzes, Z. Phys., 1928, 51:165-180. [7] Cao H. X., Guo Z. H., Foundation of Wavelet Analysis, Science Press, Beijing, 2016. [8] Cao H. X., Guo Z. H., Chen Z. L., et al., Quantitative sufficient condition for adiabatic approximation, Sci. China-Phys. Mech. Astron., 2013, 56(7):1401-1407. [9] Chen L., Cao H. X., Meng H. X., Generalized duality quantum computers acting on mixed states, Quantum Inf. Process., 2015, 14(11):4351-4360. [10] Guo Z. H., Cao H. X., Lu L., Adiabatic approximation in P T -symmetric quantum mechanics, Sci. ChinaPhys. Mech. Astron., 2014, 57(10):1835-1839. [11] Kato T., On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Jpn., 1950, 5:435-439. [12] Long G. L., General quantum interference principle and duality computer, Commun. Theor. Phys., 2006, 45(5):825-844. [13] Long G. L., Duality quantum computing and duality quantum information processing, Int. J. Theor. Phys., 2011, 50(4):1305-1318. [14] Longhi S., Fisica D. D., Time reversal of a discrete system coupled to a continuum based on non-Hermitian flip, Sci. Bull., 2017, 62(12):869-874. [15] Marzlin K. P., Sanders B. C., Inconsistency in the application of the adiabatic theorem, Phys. Rev. Lett., 2004, 93(16):160408. [16] Mostafazadeh A., Pseudo-Hermiticity versus P T -symmetry:The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys., 2001, 43(1):205-214. [17] Mostafazadeh A., Pseudo-Hermiticity versus P T -Symmetry Ⅱ:A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys., 2002, 43(5):2814-2816. [18] Mostafazadeh A., Pseudo-Hermiticity versus P T -symmetry Ⅲ:Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys., 2002, 43(8):3944-3951. [19] Mostafazadeh A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys., 2010, 7(7):1191-1306. [20] Nenciu G., On the adiabatic theorem of quantum mechanics, J. Phys. A:Math. Gen., 1980, 13(2):L15-L18. [21] Qiang X. G., Zhou X. Q., Aungskunsiri K., et al., Quantum processing by remote quantum control, Quantum Sci. Technol., 2017, 2:045002. [22] Tong D. M., Singh K., Kwek L. C., et al., Sufficiency criterion for the validity of the adiabatic approximation, Phys. Rev. Lett., 2007, 98(15):150402. [23] Wang W. H., Cao H. X., Chen Z. L., Adiabatic approximation theorem for the evolution by an A-uniformly pseudo-Hermitian Hamiltonian, Theor. Math. Phys., 2017, 192(3):1219-1233. [24] Yu B. M., Cao H. X., Guo Z. H., et al., Computable upper bounds for the adiabatic approximation errors, Sci. China-Phys. Mech. Astron., 2014, 57(11):2031-2038. [25] Zheng C., Hao L., Long G. L., Observation of a fast evolution in a parity-time-symmetric system, Philos. Trans. A Math. Phys. Eng. Sci., 2013, 371(1989):20120053.
|
[1] | 周仙耕, 张敏. 两类统计收敛的表示定理[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 251-256. | [2] | 关伟波, 宋文. Banach空间中的弱凸集和W-太阳集[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 45-50. | [3] | 施慧华, 王波. 理想收敛的若干研究及推广[J]. 数学学报, 2016, 59(3): 335-342. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23405
型C-Z算子在加权变指数Morrey空间上的有界性杨沿奇,陶双平西北师范大学数学与统计学院兰州730070Boundednessof-typeC-ZOperatorsonWeightedVariableExponentMorreySpacesYanQiYANG,Shuan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Minkowski空间的等价性定理及在Finsler几何的应用李明重庆理工大学理学院重庆400054OnEquivalenceTheoremsofMinkowskiSpacesandApplicationsinFinslerGeometryMingLISchoolofScience,Chongqin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Morrey空间上Marcinkiewicz积分与R陶双平,逯光辉西北师范大学数学与统计学院兰州730070CommutatorsofMarcinkiewiczIntegralswithRBMO()onMorreySpacesShuangPingTAO,GuangHuiLUCollegeof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27b(2)空间及b(2)空间上的等距映射王瑞东,王普天津理工大学理学院天津300384b(2)SpaceandIsometriesonb(2)SpacesRuiDongWANG,PuWANGCollegeofSciences,TianjinUniversityofTechnology,Tianjin3 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27模糊距离空间中几类非线性压缩不动点定理樊菁菁1,贺飞2,路宁21电子科技大学基础与前沿研究院,成都610054;2内蒙古大学数学科学学院,呼和浩特010021SomeFixedPointTheoremsforNonlinearContractionsinFuzzyMetricSpacesFANJin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|