删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Sobolev空间中非电阻MHD方程局部适定性

本站小编 Free考研考试/2021-12-27

Sobolev空间中非电阻MHD方程局部适定性 李亚涛中国工程物理研究院研究生院 北京 100088 Local Well-posedness for the Non-resistive MHD Equations in Sobolev Spaces Ya Tao LIThe Graduate School of China Academy of Engineering Physics, Beijing 100088, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(565 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了Rdd=2,3上的非电阻磁流体力学方程的柯西问题.通过建立一个交换子估计,我们在Sobolev空间Hs-1×Hss > d/2中证明了该方程组解的局部适定性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-08-29
MR (2010):O177.2
作者简介: 李亚涛,E-mail:liyatao_maths@163.com
引用本文:
李亚涛. Sobolev空间中非电阻MHD方程局部适定性[J]. 数学学报, 2020, 63(4): 335-348. Ya Tao LI. Local Well-posedness for the Non-resistive MHD Equations in Sobolev Spaces. Acta Mathematica Sinica, Chinese Series, 2020, 63(4): 335-348.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I4/335


[1] Bahouri H., Chemin J. Y., Danchin R., Fourier Analysis and Nonlinear Partial Differential Equations, Griondlerender Mathematischen Wissenschaften, Vol. 343, Springer, Heidelberg, 2011.
[2] Blömker D., Nolde D., Robinson J. C., Rigorous numerical verification of uniqueness and smoothness in a surface growth model, J. Math. Anal. Appl., 2015, 429(1):311-325.
[3] Bourgain J., Li D., Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, Invent. Math., 2015, 201(1):97-157.
[4] Cannone M., Ondelettes, Paraproduits et Navier-Stokes Nouveaux Essais, Diderot Éditeurs, Paris, 1995.
[5] Cannone M., Meyer Y., Planchon F., Solutions autosimilaires des équations de Navier-Stokes, Séminaire "Équations aux Dérivées Partielles" de l'École polytechnique, Expos é VIII, 1993-1994.
[6] Chemin J. Y., McCormick D. S., Robinson J. C., et al., Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 2016, 286:1-31.
[7] Chen Q., Miao C., Zhang Z., The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations, Comm. Math. Phys., 2007, 275(3):861-872.
[8] Chen Q., Miao C., Zhang Z., On the regularity criterion of weak solution for the 3D viscous magnetohydrodynamics equations, Comm. Math. Phys., 2008, 284(3):919-930.
[9] Chen Q., Miao C., Zhang Z., Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 2010, 26(3):915-946.
[10] Duvaut G., Lions J. L., Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972,
[11] Fefferman C., McCormick D., Robinson J. C., et al., Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces, Arch. Ration. Mech. Anal., 2017, 223(2):677-691.
[12] Fefferman C., McCormick D., Robinson J. C., et al., Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 2014, 267(4):1035-1056.
[13] Fujita H., Kato T., On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal., 1964, 16:269-315.
[14] Jiu Q., Niu D., Mathematical results related to a two-dimensional magneto-hydrodynamic equations, Acta Math. Sci. Ser. B, Engl. Ed., 2006, 26(4):744-756.
[15] Koch H., Tataru D., Well-posedness for the Navier-Stokes equation, Advances in Math., 2001, 157:22-35.
[16] Li J., Tan W., Yin Z., Local existence and uniqueness for the non-resistive MHD equations in homogeneous Besov spaces, Adv. Math., 2017, 317:786-798.
[17] Lin F., Xu L., Zhang P., Global small solutions of 2-D incompressible MHD system, J. Differential Equations, 2015, 259(10):5440-5485.
[18] Miao C., Wu J., Zhang Z., Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics (in Chinese), Science Press, Beijing, 2012.
[19] Sermange M., Temam R., Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 1983, 36(5):635-664.
[20] Wan R., On the uniqueness for the 2D MHD equations without magnetic diffusion, Nonlinear Anal. Real World Appl., 2016, 30:32-40.

[1]栾娜娜. 次分数布朗运动局部时的研究[J]. 数学学报, 2020, 63(1): 89-96.
[2]文娅琼, 李姣芬, 黎稳. 线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解[J]. 数学学报, 2019, 62(6): 833-852.
[3]杜法鹏, 薛以锋. Banach空间度量广义逆的乘积扰动[J]. 数学学报, 2019, 62(6): 939-948.
[4]左占飞. 广义的约当-冯诺依曼型常数和正规结构[J]. 数学学报, 2019, 62(5): 809-816.
[5]罗未, 宋传宁, 许庆祥. Hilbert C*-模上可共轭算子的并联和[J]. 数学学报, 2019, 62(4): 541-552.
[6]万育基, 余志先, 孟艳玲. 状态依赖时滞非局部扩散方程的波前解[J]. 数学学报, 2019, 62(3): 479-496.
[7]左占飞, 唐春雷. Banach空间中的Jordan-von Neumann型常数和正规结构[J]. 数学学报, 2017, 60(3): 383-388.
[8]安广宇, 李建奎. 算子代数上(m, n)-Jordan导子的刻画[J]. 数学学报, 2017, 60(1): 173-184.
[9]侯绳照, 罗晴, 卫淑云. 复平面上解析Banach空间的拟不变子空间[J]. 数学学报, 2017, 60(1): 97-112.
[10]梁月亮, 方小春, 范庆斋. C*-代数α-比较性的一种等价刻画[J]. 数学学报, 2017, 60(1): 113-122.
[11]刘晓曼, 刘永民, 于燕燕. Riemann-Stieltjes算子的本性范数[J]. 数学学报, 2016, 59(6): 847-858.
[12]宋乃琪, 赵纪满. Heisenberg型群上的仿积算子[J]. 数学学报, 2016, 59(4): 433-450.
[13]汪成咏, 渠刚荣. 玛欣凯维奇函数与泊松核的一个新微分性质[J]. 数学学报, 2016, 59(1): 1-10.
[14]黄旭剑, 谭冬妮. 向量值空间中的几何酉元[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 1001-1008.
[15]罗正华, 孙龙发, 陈丽珍. 子空间单位球的逼近紧性[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 1045-1052.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23615
相关话题/数学 空间 结构 交换 代数