删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

二面体群的Grothendieck环结构

本站小编 Free考研考试/2021-12-27

二面体群的Grothendieck环结构 唐帅泰州学院数理学院 泰州 225300 The Structure of Grothendieck Rings of Dihedral Groups Shuai TANGDepartment of Mathematics, Taizhou College, Taizhou 225300, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(411 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要二面体群的表示范畴为对称半单monoidal范畴,因而其Grothendieck环为有限多个元素生成的交换环.本文确定了该Grothendieck环的极小生成元,并且进一步证明了该Grothendieck环与某一多项式环的商环同构.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-08-22
MR (2010):O153.3
基金资助:国家自然科学基金资助项目(11871063);江苏省自然科学基金项目(BK20170589)
作者简介: 唐帅,E-mail:tangshuaixs@163.com
引用本文:
唐帅. 二面体群的Grothendieck环结构[J]. 数学学报, 2020, 63(3): 245-252. Shuai TANG. The Structure of Grothendieck Rings of Dihedral Groups. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 245-252.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I3/245


[1] Chen H., Oystaeyen F. V., Zhang Y., The Green rings of Taft algebras, Proc. Amer. Math. Soc., 2014, 142:765-775.
[2] Green J. A., The modular representation algebra of a finite group, Ill. J. Math., 1962, 6(4):607-619.
[3] Green J. A., A transfer theorem for modular representations, J. Algebra, 1964, 1:71-84.
[4] Huang H., Oystaeyen F. V., Yang Y., Zhang Y., The Green rings of pointed tensor categories of finite type, J. Pure Appl. Algebra, 2014, 218:333-342.
[5] Li L., Zhang Y., The Green rings of the generalized Taft Hopf algebras, Contemp. Math., 2013, 585:275-288.
[6] Li Y., Hu N., The Green rings of the 2-rank Taft algebra and its two relatives twisted, J. Algebra, 2014, 410:1-35.
[7] Lidl R., Mullen G. L., Turnwald G., Dickson polynomials, Harlow:Longman Scientific & Technical, 1993.
[8] Naidu D., Rowell E. C., A finiteness property for braided fusion categories, Algebr. Represent. Theory, 2011, 14(5):837-855.
[9] Ostrik V., Pivotal fusion categories of rank 3, Mosc. Math. J., 2015, 15(2):373-396.
[10] Serre J. P., Linear Representations of Finite Groups, Springer-Verlag, New Yark, 1995.
[11] Siehler J., Near-group categories, Algebr. Geom. Topol., 2003, 3(2):719-775.
[12] Wang Z., Li L., Zhang Y., Green rings of pointed rank one Hopf algebras of nilpotent type, Algebr. Represent. Theory, 2014, 17:1901-1924.
[13] Wang Z., Li L., Zhang Y., Green rings of pointed rank one Hopf algebras of non-nilpotent type, J. Algebra, 2016, 449:108-137.
[14] Wang Z., Li L. B., The Casimir Number of a Verlinde Modular Category and Its Applications, Acta Math. Sin., Chin. Series, 2018, 61(1):59-66.

[1]王志华, 李立斌. Verlinde模性范畴上的Casimir数及其应用[J]. 数学学报, 2018, 61(1): 59-66.
[2]董井成, 陈惠香. 二面体群量子偶的表示环[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 331-342.
[3]岑建苗;李金其. 三角Hopf代数表示范畴上的Lie余代数[J]. Acta Mathematica Sinica, English Series, 2000, 43(3): 495-502.
[4]李世荣;李世余. 有限可分群的一个可解性定理[J]. Acta Mathematica Sinica, English Series, 1986, 29(3): 413-416.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23598
相关话题/结构 代数 数学 数理 交换