摘要拓扑空间X的覆盖列{Pi}i∈N被称为空间X的点星网,若x∈X,则{st(x,Pi)i∈N是x在X中的网.本文刻画具有cs有限cs覆盖列的点星网的空间,并将其表示为度量空间在确定映射下的像.在假设集族性质P满足适当的条件下,证明对拓扑空间X下述条件相互等价: (1)X具有P且cs覆盖列的点星网. (2)X具有P且sn覆盖列的点星网. (3)X是Cauchy sn对称空间且具有σ-P的cs网. (4)X是Cauchy sn对称空间且具有σ-P的sn网. (5)X是度量空间的序列覆盖、π且σ-P映像. (6)X是度量空间的1序列覆盖、紧且σ-P映像. 这些工作以局部有限集族与点有限集族为特例,拓展了从基到cs网的研究,丰富了映射与空间的相互分类思想. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-01-21 | | 基金资助:国家自然科学基金资助项目(11801254,11471153)
| 作者简介: 林寿,E-mail:shoulin60@163.com;黄燕晖,E-mail:645137233@qq.com;张静,E-mail:zhangjing86@126.com |
[1] Alexandroff S. P., On the metrization of topological spaces (in Russian), Bull. Polon. Sci. Ser. Math., 1960, 8:135-140. [2] An T. V., Tuyen L. Q., On π-images of separable metric spaces and a problem of Shou Lin, Mat. Vesnik, 2012, 64(4):297-302. [3] An T. V., Tuyen L. Q., Cauchy sn-symmetric spaces with a cs-network (cs*-network) having property σ-P, Topology Proc., 2018, 51:61-75. [4] Arhangel'sk? A. V., On mappings of metric spaces (in Russian), Dokl. Akad. Nauk SSSR, 1962, 145(2):245-247. [5] Arhangel'sk? A. V., Bicompact sets and the topology of spaces (in Russian), Tr. Mosk. Mat. Obs., 1965, 13:3-55. [6] Arhangel'sk? A. V., Mappings and spaces (in Russian), Uspechi Mat. Nauk, 1966, 21(4):133-184. [7] Banakh T. O., Bogachev V. I., Kolesnikov A. V., k*-Metrizable spaces and their applications, J. Math. Sci., 2008, 155(4):475-522. [8] Boone J. R., Some characterizations of paracompactness in k-spaces, Fund. Math., 1971, 72(2):145-153. [9] Engelking R., General Topology (Revised and Completed Edition), Heldermann, Berlin, 1989. [10] Foged L., Characterizations of N-spaces, Pacific J. Math., 1984, 110(1):59-63. [11] Gabriyelyan S. S., K?kol J., On P-spaces and related concepts, Topol. Appl., 2015, 191:178-198. [12] Gao Z. M., N-space is invariant under perfect mappings, Questions Answers in General Topology, 1987, 5(2):271-279. [13] Ge X., Ge Y., 2-Sequence-covering mappings in Ponomarev-systems, Adv. Math. China, 2015, 44(5):752-756. [14] Ge Y., Lin S., On Ponomarev-systems, Bollettino dell'Unione Matematica Italiana, 2007, 10B(2):455-467. [15] Ge Y., Lin S., g-Metrizable spaces and the images of semi-metric spaces, Czech. Math. J., 2007, 57(4):1141-1149. [16] Guthrie J. A., A characterization of N0-spaces, General Topol. Appl., 1971, 1(2):105-110. [17] Ikeda Y., Liu C., Tanaka Y., Quotient compact images of metric spaces, and related matters, Topol. Appl., 2002, 122(1-2):237-252. [18] Li Z. W., Xie T. S., A note on sequence-covering π-images of metric spaces, Mat. Vesnik, 2012, 64(4):326-329. [19] Lin S., Locally countable collections, locally finite collections and Alexandroff's problems, Acta Math. Sin., Chin. Ser., 1994, 37(4):491-496. [20] Lin S., On sequence-covering s-mappings (in Chinese), Adv. Math. PRC, 1996, 25(6):548-551. [21] Lin S., A note on the Arens' space and sequential fan, Topol. Appl., 1997, 81:185-196. [22] Lin S., Poin-covering Covers and Sequence-covering Mappings (in Chinese), the Second Edition, Science Press, Beijing, 2015. [23] Lin S., Cai Z. Y., Closed mappings, boundary-compact mappings and sequence-covering mappings, Houston J. Math., 2016, 42(3):1059-1078. [24] Lin S., Ge Y., Compact-covering and 1-sequence-covering images of metric spaces, Houston J. Math., 2019, 45(1):293-305. [25] Lin S., Yan P. F., On sequence-covering compact mappings, Acta Math. Sin., Chin. Ser., 2001, 44(1):175-182. [26] Lin S., Yan P. F., Notes on cfp-covers, Comment Math. Univ. Carolinae, 2003, 44:295-306. [27] Lin S., Yun Z. Q., Generalized Metric Spaces and Mappings, Atlantis Studies in Mathematics 6, Atlantis Press, Paris, 2016; Mathematics Monograph Series 34, Science Press, Beijing, 2017. [28] Siwiec F., Sequence-covering and countably bi-quotient mappings, General Topol. Appl., 1971, 1:143-154. [29] Tanaka Y., Ge Y., Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 2006, 32(1):99-117. [30] Yan P. F., On strong sequence-covering compact mappings, North. Math. J., 1998, 14(3):341-344. [31] Yan P. F., Jiang S. L., On the compact-covering π-maps (in Chinese), J. Math., 2004, 24(4):429-432.
|
[1] | 文娅琼, 李姣芬, 黎稳. 线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解[J]. 数学学报, 2019, 62(6): 833-852. | [2] | 陈全园, 李长京, 方小春. von Neumann代数中CSL子代数上的Jordan (α,β)-导子[J]. 数学学报, 2017, 60(4): 537-546. | [3] | 葛英;林寿. 一致覆盖和度量空间的紧映象[J]. Acta Mathematica Sinica, English Series, 2004, 47(6): 1149-115. | [4] | 燕鹏飞;林寿;江守礼. 序列覆盖的闭映射保持可度量性[J]. Acta Mathematica Sinica, English Series, 2004, 47(1): 87-90. | [5] | 燕鹏飞;江守礼. 弱基与1序列覆盖映射[J]. Acta Mathematica Sinica, English Series, 2003, 46(6): 1221-122. | [6] | 林寿;周友成;燕鹏飞. 关于序列覆盖π映射[J]. Acta Mathematica Sinica, English Series, 2002, 45(6): 1157-116. | [7] | 林寿;燕鹏飞. 关于序列覆盖紧映射[J]. Acta Mathematica Sinica, English Series, 2001, 44(1): 175-182. | [8] | 李进金;蔡伟元. 关于序列覆盖s映射的注记[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 757-762. | [9] | 李进金;江守礼. 关于局部可数网与ss映射[J]. Acta Mathematica Sinica, English Series, 1999, 42(5): 827-832. | [10] | 周丽珍. 局部可分度量空间的序列覆盖s象[J]. Acta Mathematica Sinica, English Series, 1999, 42(4): -. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23523
Banach空间度量广义逆的乘积扰动杜法鹏1,薛以锋21.徐州工程学院数学与物理科学学院徐州221008;2.华东师范大学算子代数研究中心上海市核心数学与实践重点实验室华东师范大学数学科学学院上海200241MultiplicativePerturbationsofMetricGeneralized ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27渐近Teichmller空间的不唯一性黄志勇,周泽民中国人民大学数学系北京100872NonuniquenessPropertiesonAsymptoticTeichmullerSpaceZhiYongHUANG,ZeMinZHOUDepartmentofMathematics,Renm ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法蔡钢重庆师范大学数学科学学院重庆401331ViscosityIterativeAlgorithmsforaNewVariationalInequalityProblemandFixedPointProbleminHilbertSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多复变中正规权Zygmund空间上的几个性质黎深莲,张学军湖南师范大学数学与统计学院长沙410006SeveralPropertiesontheNormalWeightZygmundSpaceinSeveralComplexVariablesShenLianLI,XueJunZHANGCollege ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Fock空间上的Hankel算子王晓峰1,夏锦1,陈建军21.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2.肇庆学院数学与统计学院肇庆526061HankelOperatorsonGeneralizedFockSpacesXiaoFengWANG1,JinXIA1,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义映射Schrdinger-Virasoro代数的二上同调群王松,王晓明上海海洋大学信息学院上海201306SecondCohomologyGroupsoftheGeneralizedMapSchrdinger-VirasoroAlgebrasSongWANGXiao,Mi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27李Rinehart代数的子代数若干性质王雪冰1,牛艳君2,陈良云31松原职业技术学院基础部松原138001;2长春工程学院理学院长春130024;3东北师范大学数学与统计学院长春130024SomePropertiesofSubalgebrasofLie-RinehartAlgebrasXueBin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于弱Hopf代数的半单范畴的构造张晓辉,吴慧曲阜师范大学数学科学学院曲阜273165ConstructionofSemisimpleCategoriesoverWeakHopfAlgebrasXiaoHui,ZHANGHuiWUSchoolofMathematicalScience,QufuNor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27类拟b-距离空间中几类循环压缩映射不动点定理司马傲蕾,贺飞,路宁内蒙古大学数学科学学院呼和浩特010021FixedPointTheoremsforSeveralCyclic-ContractiveMappingsinDislocatedQuasi-b-metricSpacesAoLeiSIMA,F ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|