删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

点星网与度量空间的映像

本站小编 Free考研考试/2021-12-27

点星网与度量空间的映像 林寿1, 黄燕晖2, 张静21. 宁德师范学院数理学院 宁德 352100;
2. 闽南师范大学数学与统计学院 漳州 363000 Point-star Networks and Images of Metric Spaces Shou LIN1, Yan Hui HUANG2, Jing ZHANG21. School of Mathematics and Physics, Ningde Normal University, Ningde 352100, P. R. China;
2. School of Mathematics and Statistics, Minnan Normal University Zhangzhou 363000, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(567 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要拓扑空间X的覆盖列{Pi}i∈N被称为空间X的点星网,若xX,则{st(xPii∈NxX中的网.本文刻画具有cs有限cs覆盖列的点星网的空间,并将其表示为度量空间在确定映射下的像.在假设集族性质P满足适当的条件下,证明对拓扑空间X下述条件相互等价:
(1)X具有Pcs覆盖列的点星网.
(2)X具有Psn覆盖列的点星网.
(3)X是Cauchy sn对称空间且具有σ-Pcs网.
(4)X是Cauchy sn对称空间且具有σ-Psn网.
(5)X是度量空间的序列覆盖、πσ-P映像.
(6)X是度量空间的1序列覆盖、紧且σ-P映像.
这些工作以局部有限集族与点有限集族为特例,拓展了从基到cs网的研究,丰富了映射与空间的相互分类思想.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-01-21
MR (2010):O189.1
基金资助:国家自然科学基金资助项目(11801254,11471153)
作者简介: 林寿,E-mail:shoulin60@163.com;黄燕晖,E-mail:645137233@qq.com;张静,E-mail:zhangjing86@126.com
引用本文:
林寿, 黄燕晖, 张静. 点星网与度量空间的映像[J]. 数学学报, 2019, 62(6): 865-878. Shou LIN, Yan Hui HUANG, Jing ZHANG. Point-star Networks and Images of Metric Spaces. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 865-878.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/865


[1] Alexandroff S. P., On the metrization of topological spaces (in Russian), Bull. Polon. Sci. Ser. Math., 1960, 8:135-140.
[2] An T. V., Tuyen L. Q., On π-images of separable metric spaces and a problem of Shou Lin, Mat. Vesnik, 2012, 64(4):297-302.
[3] An T. V., Tuyen L. Q., Cauchy sn-symmetric spaces with a cs-network (cs*-network) having property σ-P, Topology Proc., 2018, 51:61-75.
[4] Arhangel'sk? A. V., On mappings of metric spaces (in Russian), Dokl. Akad. Nauk SSSR, 1962, 145(2):245-247.
[5] Arhangel'sk? A. V., Bicompact sets and the topology of spaces (in Russian), Tr. Mosk. Mat. Obs., 1965, 13:3-55.
[6] Arhangel'sk? A. V., Mappings and spaces (in Russian), Uspechi Mat. Nauk, 1966, 21(4):133-184.
[7] Banakh T. O., Bogachev V. I., Kolesnikov A. V., k*-Metrizable spaces and their applications, J. Math. Sci., 2008, 155(4):475-522.
[8] Boone J. R., Some characterizations of paracompactness in k-spaces, Fund. Math., 1971, 72(2):145-153.
[9] Engelking R., General Topology (Revised and Completed Edition), Heldermann, Berlin, 1989.
[10] Foged L., Characterizations of N-spaces, Pacific J. Math., 1984, 110(1):59-63.
[11] Gabriyelyan S. S., K?kol J., On P-spaces and related concepts, Topol. Appl., 2015, 191:178-198.
[12] Gao Z. M., N-space is invariant under perfect mappings, Questions Answers in General Topology, 1987, 5(2):271-279.
[13] Ge X., Ge Y., 2-Sequence-covering mappings in Ponomarev-systems, Adv. Math. China, 2015, 44(5):752-756.
[14] Ge Y., Lin S., On Ponomarev-systems, Bollettino dell'Unione Matematica Italiana, 2007, 10B(2):455-467.
[15] Ge Y., Lin S., g-Metrizable spaces and the images of semi-metric spaces, Czech. Math. J., 2007, 57(4):1141-1149.
[16] Guthrie J. A., A characterization of N0-spaces, General Topol. Appl., 1971, 1(2):105-110.
[17] Ikeda Y., Liu C., Tanaka Y., Quotient compact images of metric spaces, and related matters, Topol. Appl., 2002, 122(1-2):237-252.
[18] Li Z. W., Xie T. S., A note on sequence-covering π-images of metric spaces, Mat. Vesnik, 2012, 64(4):326-329.
[19] Lin S., Locally countable collections, locally finite collections and Alexandroff's problems, Acta Math. Sin., Chin. Ser., 1994, 37(4):491-496.
[20] Lin S., On sequence-covering s-mappings (in Chinese), Adv. Math. PRC, 1996, 25(6):548-551.
[21] Lin S., A note on the Arens' space and sequential fan, Topol. Appl., 1997, 81:185-196.
[22] Lin S., Poin-covering Covers and Sequence-covering Mappings (in Chinese), the Second Edition, Science Press, Beijing, 2015.
[23] Lin S., Cai Z. Y., Closed mappings, boundary-compact mappings and sequence-covering mappings, Houston J. Math., 2016, 42(3):1059-1078.
[24] Lin S., Ge Y., Compact-covering and 1-sequence-covering images of metric spaces, Houston J. Math., 2019, 45(1):293-305.
[25] Lin S., Yan P. F., On sequence-covering compact mappings, Acta Math. Sin., Chin. Ser., 2001, 44(1):175-182.
[26] Lin S., Yan P. F., Notes on cfp-covers, Comment Math. Univ. Carolinae, 2003, 44:295-306.
[27] Lin S., Yun Z. Q., Generalized Metric Spaces and Mappings, Atlantis Studies in Mathematics 6, Atlantis Press, Paris, 2016; Mathematics Monograph Series 34, Science Press, Beijing, 2017.
[28] Siwiec F., Sequence-covering and countably bi-quotient mappings, General Topol. Appl., 1971, 1:143-154.
[29] Tanaka Y., Ge Y., Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 2006, 32(1):99-117.
[30] Yan P. F., On strong sequence-covering compact mappings, North. Math. J., 1998, 14(3):341-344.
[31] Yan P. F., Jiang S. L., On the compact-covering π-maps (in Chinese), J. Math., 2004, 24(4):429-432.

[1]文娅琼, 李姣芬, 黎稳. 线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解[J]. 数学学报, 2019, 62(6): 833-852.
[2]陈全园, 李长京, 方小春. von Neumann代数中CSL子代数上的Jordan (α,β)-导子[J]. 数学学报, 2017, 60(4): 537-546.
[3]葛英;林寿. 一致覆盖和度量空间的紧映象[J]. Acta Mathematica Sinica, English Series, 2004, 47(6): 1149-115.
[4]燕鹏飞;林寿;江守礼. 序列覆盖的闭映射保持可度量性[J]. Acta Mathematica Sinica, English Series, 2004, 47(1): 87-90.
[5]燕鹏飞;江守礼. 弱基与1序列覆盖映射[J]. Acta Mathematica Sinica, English Series, 2003, 46(6): 1221-122.
[6]林寿;周友成;燕鹏飞. 关于序列覆盖π映射[J]. Acta Mathematica Sinica, English Series, 2002, 45(6): 1157-116.
[7]林寿;燕鹏飞. 关于序列覆盖紧映射[J]. Acta Mathematica Sinica, English Series, 2001, 44(1): 175-182.
[8]李进金;蔡伟元. 关于序列覆盖s映射的注记[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 757-762.
[9]李进金;江守礼. 关于局部可数网与ss映射[J]. Acta Mathematica Sinica, English Series, 1999, 42(5): 827-832.
[10]周丽珍. 局部可分度量空间的序列覆盖s象[J]. Acta Mathematica Sinica, English Series, 1999, 42(4): -.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23523
相关话题/空间 序列 数学 闽南师范大学 代数