删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

三角代数上 Jordan 积为幂等元处的高阶ξ-Lie 可导映射

本站小编 Free考研考试/2021-12-27

三角代数上 Jordan 积为幂等元处的高阶ξ-Lie 可导映射 张霞, 张建华陕西师范大学数学与信息科学学院 西安 710062 Higher ξ-Lie Derivable Maps on Triangular Algebras by Jordan Product Idempotents Xia ZHANG, Jian Hua ZHANGSchool of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(369 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要U=Tri(AMB)是三角代数,{φn}n∈NUU是一列线性映射.本文利用代数分解的方法,证明了如果对任意U,VUU?V=P为标准幂等元,有φn([U,V]ξi+j=nφiUφjV)-ξφiVφjU))(ξ≠1),则{φn}n∈N是一个高阶导子,其中φ0=id为恒等映射,U?V=UV+VU为Jordan积,[U,V]ξ=UV-ξVUξ-Lie积.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-02-25
MR (2010):O177.1
基金资助:国家自然科学基金资助项目(11471199)
作者简介: 张霞,E-mail:15529091178@163.com;张建华,E-mail:jhzhang@snnu.edu.cn
引用本文:
张霞, 张建华. 三角代数上 Jordan 积为幂等元处的高阶ξ-Lie 可导映射[J]. 数学学报, 2020, 63(3): 221-228. Xia ZHANG, Jian Hua ZHANG. Higher ξ-Lie Derivable Maps on Triangular Algebras by Jordan Product Idempotents. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 221-228.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I3/221


[1] An R., Hou J., Characterizations of derivations on triangular rings:Additive maps derivable at idempotents, Linear Algebra Appl., 2009, 431(5-7):1070-1080.
[2] Fei X., Zhang J., Higher ξ-Lie derivable maps on triangular algebras at zero point, Journal of Shannxi Normal University (Natural Science), 2015, 43(3):6-9.
[3] Ji P., Qi W., Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 2011, 435(5):1137-1146.
[4] Li J., Zhou J., Characterizations of Jordan derivations and Jordan homomorphisms, Linear and Multilinear Algebra, 2011, 59(3):193-204.
[5] Liu D., Zhang J., Jordan higher derivable maps on triangular algebras by commutative zero products, Acta Math. Sinica, 2016, 32(2):258-264.
[6] Mizavaziri M., Characterization of higher derivations on algebras, Communications in Algebra, 2010, 38(3):981-987.
[7] Qi X., Cui J., Hou J., Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products, Linear Algebra Appl., 2011, 434(3):669-682.
[8] Qi X., Hou J., Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on nest algebras, Linear Algebra Appl., 2009, 431(5-7):843-854.
[9] Xiao Z., Wei F., Jordan higher derivations on triangular algebra, Linear Algebra Appl., 2010, 432(1):2615-2622.
[10] Zeng H., Zhu J., Jordan higher all-derivable points on nontrivial nest algebra, Linear Algebra Appl., 2011, 434(2):463-474.
[11] Zhang X., An R., Hou J., Characterizations of higher derivations on CLS algerbras, Expo. Math., 2013, 31(4):392-404.
[12] Zhao J., Zhu J., Jordan higher all-derivable points in triangular algerbras, Linear Algebra Appl., 2012, 436:3072-3086.
[13] Zhen N., Zhu J., Jordan higher all-derivable points in nest algebras, Taiwanese Journal of Mathematics, 2012, 16(6):1959-1970.

[1]孟利花, 张建华. 三角代数上的一类非全局三重可导映射[J]. 数学学报, 2017, 60(6): 955-960.
[2]白延丽, 张建华. 三角代数上Lie三重导子的刻画[J]. 数学学报, 2017, 60(1): 31-38.
[3]费秀海, 张建华, 王中华. 三角代数上的非线性(m,n)-高阶导子[J]. 数学学报, 2016, 59(5): 645-658.
[4]刘丹, 张建华. 三角代数上Jordan高阶导子的刻画[J]. 数学学报, 2016, 59(4): 461-468.
[5]刘磊. 套代数上的高阶全可导点[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 861-870.
[6]刘丹, 张建华. 三角代数上的交换零点Jordan可导映射[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1203-1208.
[7]黄美愿, 张建华. 三角代数上的Jordan零点ξ-Lie可导映射[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 953-960.
[8]齐霄霏;侯晋川;. 三角代数上的ξ-Lie可乘映射[J]. Acta Mathematica Sinica, English Series, 2009, (03): 181-186.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23596
相关话题/代数 数学 陕西师范大学 数学与信息科学学院 交换