删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一些算子的交换子在广义Morrey空间上的紧性

本站小编 Free考研考试/2021-12-27

一些算子的交换子在广义Morrey空间上的紧性 郭庆栋, 周疆新疆大学数学与系统科学学院 乌鲁木齐 830046 Compactness of Commutators for Some Operators on Generalized Morrey Spaces Qing Dong GUO, Jiang ZHOUCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(470 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究分数次积分算子、Marcinkiewicz积分、带光滑核的pseudo-differential算子的交换子在广义Morrey空间Mp,ω(Rn)上的紧性.注意它们的处理方法分别不同.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-04-02
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11661075,11826202)
作者简介: 郭庆栋,E-mail:guoqingdongshuxin@126.com;周疆,E-mail:zhoujiang@xju.edu.cn
引用本文:
郭庆栋, 周疆. 一些算子的交换子在广义Morrey空间上的紧性[J]. 数学学报, 2020, 63(4): 367-380. Qing Dong GUO, Jiang ZHOU. Compactness of Commutators for Some Operators on Generalized Morrey Spaces. Acta Mathematica Sinica, Chinese Series, 2020, 63(4): 367-380.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I4/367


[1] Bokayev N., Burenkov V., Matin D., On the pre-compactness of a set in the generalized Morrey spaces, Vest Kar., 2016, 4:18-40.
[2] Bokayev N., Matin D., Compactness of commutators for one type of singular integrals on generalized Morrey spaces, Funct. Anal. Inte. Appl., 2017:44-51.
[3] Chen Y. P., Ding Y., Compactness characterization of commutators for Littlewood-Paley operators, Kodai Math. J., 2009, 32(2):256-323.
[4] Chen Y. P., Ding Y., Wang X. X., Compactness of the commutators of riesz potential on Morrey spaces, Potential Anal., 2009, 30:301-313.
[5] Chen Y. P., Ding Y., Wang X. X., Compactness for commutators of Marcinkiewicz integrals in Morrey spaces, Taiwanese J. Math., 2011, 5(2):633-658.
[6] Chen Y. P., Ding Y., Wang X. X., Compactness of commutators for singular integrals on Morrey spaces, Canad J. Math., 2012, 64(2):257-281.
[7] Coifman R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several variables, Ann. Math., 1976, 103(3):611-635.
[8] Ding Y., Lu S. Z., Homogeneous fractional integrals on Hardy spaces, Tohoku Math. J., 2000, 52(1):153-162.
[9] Guliyev V., Aliyev S., Karaman T., et al., Boundedness of sublinear operators and commutators on eeneralized Morrey spaces, Integral Equations Operator Theory, 2011, 3:327-355.
[10] Guliyev V., Aliyev S., Karaman T., Boundedness of a class of sublinear operators and their commutators on generalized Morrey spaces, Integral Equations Operator Theory, 2014, 3:327.
[11] Stein E., On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc., 1958, 88(2):430-466.
[12] Stein E., Harmonic Analysis:Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 2006.
[13] Taylor M., Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1992.
[14] Uchiyama A., On the compactness of operators of Hankel type, Tohoku Math. J., 1978, 30(1):163-171.
[15] Wang S., The compactness of the commutator of fractional integral operator (in Chinese), Chinese Ann. Math. Ser. A., 1987, 8:475-482.
[16] Yosida K., Functional Analysis, Springer-Verlag, Berlin, 1978.

[1]李亚涛. Sobolev空间中非电阻MHD方程局部适定性[J]. 数学学报, 2020, 63(4): 335-348.
[2]陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278.
[3]王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间[J]. 数学学报, 2018, 61(4): 641-650.
[4]王定怀, 周疆. 一类新型BMO空间[J]. 数学学报, 2017, 60(5): 833-846.
[5]张超. 广义Bergman空间上的紧复合算子[J]. 数学学报, 2017, 60(5): 745-750.
[6]何家维, 李成福. p-Laplacian算子分数阶微分方程边值问题正解的存在唯一性[J]. 数学学报, 2017, 60(5): 751-762.
[7]房敏, 刘永民. 不同Bloch型空间之间的积型算子的紧性[J]. 数学学报, 2017, 60(4): 661-668.
[8]张蕾, 石少广, 郑庆玉. 含参数加权极大Lebesgue空间中次线性算子的有界性质[J]. 数学学报, 2017, 60(3): 521-530.
[9]王玮, 侯晋川. 自伴标准算子代数上强保持k-斜交换性映射的刻画[J]. 数学学报, 2017, 60(1): 39-52.
[10]毛素珍, 孙丽静, 伍火熊. 双线性Fourier乘子交换子的有界性与紧性[J]. 数学学报, 2016, 59(3): 317-334.
[11]龙见仁, 李叶舟. 加权Bloch型空间上的广义复合算子[J]. 数学学报, 2016, 59(2): 279-288.
[12]赵磊娜. 非线性各向异性椭圆方程的均匀化[J]. 数学学报, 2016, 59(2): 209-214.
[13]叶善力, 林彩淑. Zygmund空间上的微分复合算子[J]. 数学学报, 2016, 59(1): 11-20.
[14]罗正华, 孙龙发, 陈丽珍. 子空间单位球的逼近紧性[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 1045-1052.
[15]李立莉. 单群2G2(32n+1)的拟刻画[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 359-364.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23617
相关话题/数学 空间 交换 分数 新疆大学