摘要本文研究如下带有变号势函数的分数阶Schrödinger-Kirchhoff方程
其中s∈(0,1),p∈[2,∞),q∈(1,p),a,b>0,λ,μ>0均为正常数,在V,f,g等函数合适的条件下,运用喷泉定理获得该系统无穷多高能量解的存在性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-02-13 | | 基金资助:国家自然科学基金(11601048, 11871302);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0295);重庆市教委项目(KJQN201800533);重庆师范大学青年拔尖人才资助项目(02030307/0040)
| 作者简介: 徐家发,E-mail:xujiafa292@sina.com;刘立山,E-mail:mathlls@163.com;蒋继强,E-mail:qfjjq@163.com |
[1] Ambrosio V., Isernia T., Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 2018, 38(11):5835-5881. [2] Chang X., Wang Z., Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 2014, 256:2965-2992. [3] Chen J., Cheng B., Tang X., New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional p-Laplacian with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM, 2018, 112(1):153-176. [4] Chen J., Huang X., Zhu C., Existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff system involving the fractional p-Laplacian with sign-changing potential, Comput. Math. Appl., 2019, in press. [5] Cheng B., Tang X., New existence of solutions for the fractional p-Laplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math., 2016, 13:3373-3387. [6] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5):521-573. [7] Franzina G., Palatucci G., Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 2014, 5:315-328. [8] Ge B., Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal. Real World Appl., 2016, 30:236-247. [9] Iannizzotto A., Liu S., Perera K., et al., Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var., 2016, 9(2):101-125. [10] Jiang J., Liu L., Wu Y., Positive solutions to singular fractional differential system with coupled boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(11):3061-3074. [11] Khoutir S., Chen H., Existence of infinitely many high energy solutions for a fractional Schrödinger equation in RN, Appl. Math. Lett., 2016, 61:156-162. [12] Lindgren E., Lindqvist P., Fractional eigenvalues, Calc. Var. Partial Differential Equations, 2014, 49:795-826. [13] Lou Q., Luo H., Multiplicity and concentration of positive solutions for fractional p-Laplacian problem involving concave-convex nonlinearity, Nonlinear Anal. Real World Appl., 2018, 42:387-408. [14] Pucci P., Xiang M., Zhang B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN, Calc. Var. Partial Differential Equations, 2015, 54(3):2785-2806. [15] Shang X., Zhang J., Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 2014, 27:187-207. [16] Secchi S., Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator, Complex Var. Elliptic Equ., 2017, 62(5):654-669. [17] Secchi S., Ground state solutions for nonlinear fractional Schrödinger equations in RN, J. Math. Phys., 2013, 54:031501. [18] Sun W., Sun H., Li X., Fractional Derivative Modeling in Mechanical and Engineering Problems, Science Press, Beijing, 2010. [19] Teng K., Multiple solutions for a class of fractional Schrödinger equations in RN, Nonlinear Anal. Real World Appl., 2015, 21:76-86. [20] Wang Y., Liu L., Zhang X., et al., Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Appl. Math. Comput., 2015, 258:312-324. [21] Willem M., Minimax Theorems, Birkhämser, Boston, 1996. [22] Xiang M., Zhang B., Ferrara M., Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 2015, 424(2):1021-1041. [23] Xiang M., Zhang B., Guo X., Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem, Nonlinear Anal., 2015, 120:299-313. [24] Xu J., Wei Z., Dong W., Weak solutions for a fractional p-Laplacian equation with sign-changing potential, Complex Var. Elliptic Equ., 2016, 61(2):284-296. [25] Xu J., Wei Z., Dong W., Existence of nontrivial solutions for second order impulsive periodic boundary value problems, Acta Analysis Functionalis Applicata, 2013, 15(4):360-366. [26] Yang L., Multiplicity of solutions for fractional Schrödinger equations with perturbation, Bound. Value Probl., 2015, 2015:56, https://doi.org/10.1186/s13661-015-0317-5. [27] Zhang B., Bisci G., Servadei R., Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity, 2015, 28(7):2247-2264. [28] Zhang Y., Tang X., Zhang J., Existence of infinitely many solutions for fractional p-Laplacian Schrödinger-Kirchhoff type equations with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM, 2019, 113:569-586. [29] Zhao J., Structure Theory of Banach Spaces, Wuhan University Press, Wuhan, 1991. [30] Zheng Z., On the developments and applications of fractional differential equations, J. of Xuzhou Normal Univ., 2008, 26(2):1-10.
|
[1] | 毛安民, 李安然. 薛定谔方程及薛定谔-麦克斯韦方程的多解[J]. Acta Mathematica Sinica, English Series, 2012, 55(3): 425-436. | [2] | 刘轼波;李树杰. 一类超线性椭圆方程的无穷多解[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 625-630. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23595
伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Klein-Gordon-Maxwell系统的无穷多变号解张鲁豫华北水利水电大学数学与统计学院,郑州450011InfinitelyManySign-changingSolutionsfortheNonlinearKlein-Gordon-MaxwellSystemZHANGLuyuSchoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27异构多智能体系统的非凸输入约束一致性黄辉1,莫立坡2,曹显兵21.广东财经大学统计与数学学院,广州510320;2.北京工商大学数学与统计学院,北京100048ConsensusofHeterogeneousMulti-agentSystemswithNonconvexInputConstraint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|