删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

分数阶Schrödinger-Kirchhoff 方程无穷多高能量解的存在性

本站小编 Free考研考试/2021-12-27

分数阶Schrödinger-Kirchhoff 方程无穷多高能量解的存在性 徐家发1, 刘立山2, 蒋继强21. 重庆师范大学数学科学学院 重庆 401331;
2. 曲阜师范大学数学科学学院 曲阜 273165 Existence of Infinitely Many High Energy Solutions for Fractional Schrödinger-Kirchhoff Equations Jia Fa XU1, Li Shan LIU2, Ji Qiang JIANG21. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P. R. China;
2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(530 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究如下带有变号势函数的分数阶Schrödinger-Kirchhoff方程

其中s∈(0,1),p∈[2,∞),q∈(1,p),a,b>0,λ,μ>0均为正常数,在V,f,g等函数合适的条件下,运用喷泉定理获得该系统无穷多高能量解的存在性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-02-13
MR (2010):O175.2
O176.3
基金资助:国家自然科学基金(11601048, 11871302);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0295);重庆市教委项目(KJQN201800533);重庆师范大学青年拔尖人才资助项目(02030307/0040)
作者简介: 徐家发,E-mail:xujiafa292@sina.com;刘立山,E-mail:mathlls@163.com;蒋继强,E-mail:qfjjq@163.com
引用本文:
徐家发, 刘立山, 蒋继强. 分数阶Schrödinger-Kirchhoff 方程无穷多高能量解的存在性[J]. 数学学报, 2020, 63(3): 209-220. Jia Fa XU, Li Shan LIU, Ji Qiang JIANG. Existence of Infinitely Many High Energy Solutions for Fractional Schrödinger-Kirchhoff Equations. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 209-220.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I3/209


[1] Ambrosio V., Isernia T., Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 2018, 38(11):5835-5881.
[2] Chang X., Wang Z., Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 2014, 256:2965-2992.
[3] Chen J., Cheng B., Tang X., New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional p-Laplacian with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM, 2018, 112(1):153-176.
[4] Chen J., Huang X., Zhu C., Existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff system involving the fractional p-Laplacian with sign-changing potential, Comput. Math. Appl., 2019, in press.
[5] Cheng B., Tang X., New existence of solutions for the fractional p-Laplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math., 2016, 13:3373-3387.
[6] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5):521-573.
[7] Franzina G., Palatucci G., Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 2014, 5:315-328.
[8] Ge B., Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal. Real World Appl., 2016, 30:236-247.
[9] Iannizzotto A., Liu S., Perera K., et al., Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var., 2016, 9(2):101-125.
[10] Jiang J., Liu L., Wu Y., Positive solutions to singular fractional differential system with coupled boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(11):3061-3074.
[11] Khoutir S., Chen H., Existence of infinitely many high energy solutions for a fractional Schrödinger equation in RN, Appl. Math. Lett., 2016, 61:156-162.
[12] Lindgren E., Lindqvist P., Fractional eigenvalues, Calc. Var. Partial Differential Equations, 2014, 49:795-826.
[13] Lou Q., Luo H., Multiplicity and concentration of positive solutions for fractional p-Laplacian problem involving concave-convex nonlinearity, Nonlinear Anal. Real World Appl., 2018, 42:387-408.
[14] Pucci P., Xiang M., Zhang B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN, Calc. Var. Partial Differential Equations, 2015, 54(3):2785-2806.
[15] Shang X., Zhang J., Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 2014, 27:187-207.
[16] Secchi S., Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator, Complex Var. Elliptic Equ., 2017, 62(5):654-669.
[17] Secchi S., Ground state solutions for nonlinear fractional Schrödinger equations in RN, J. Math. Phys., 2013, 54:031501.
[18] Sun W., Sun H., Li X., Fractional Derivative Modeling in Mechanical and Engineering Problems, Science Press, Beijing, 2010.
[19] Teng K., Multiple solutions for a class of fractional Schrödinger equations in RN, Nonlinear Anal. Real World Appl., 2015, 21:76-86.
[20] Wang Y., Liu L., Zhang X., et al., Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Appl. Math. Comput., 2015, 258:312-324.
[21] Willem M., Minimax Theorems, Birkhämser, Boston, 1996.
[22] Xiang M., Zhang B., Ferrara M., Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 2015, 424(2):1021-1041.
[23] Xiang M., Zhang B., Guo X., Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem, Nonlinear Anal., 2015, 120:299-313.
[24] Xu J., Wei Z., Dong W., Weak solutions for a fractional p-Laplacian equation with sign-changing potential, Complex Var. Elliptic Equ., 2016, 61(2):284-296.
[25] Xu J., Wei Z., Dong W., Existence of nontrivial solutions for second order impulsive periodic boundary value problems, Acta Analysis Functionalis Applicata, 2013, 15(4):360-366.
[26] Yang L., Multiplicity of solutions for fractional Schrödinger equations with perturbation, Bound. Value Probl., 2015, 2015:56, https://doi.org/10.1186/s13661-015-0317-5.
[27] Zhang B., Bisci G., Servadei R., Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity, 2015, 28(7):2247-2264.
[28] Zhang Y., Tang X., Zhang J., Existence of infinitely many solutions for fractional p-Laplacian Schrödinger-Kirchhoff type equations with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM, 2019, 113:569-586.
[29] Zhao J., Structure Theory of Banach Spaces, Wuhan University Press, Wuhan, 1991.
[30] Zheng Z., On the developments and applications of fractional differential equations, J. of Xuzhou Normal Univ., 2008, 26(2):1-10.

[1]毛安民, 李安然. 薛定谔方程及薛定谔-麦克斯韦方程的多解[J]. Acta Mathematica Sinica, English Series, 2012, 55(3): 425-436.
[2]刘轼波;李树杰. 一类超线性椭圆方程的无穷多解[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 625-630.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23595
相关话题/分数 数学 重庆师范大学 科学学院 系统