删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

变量核奇异积分和分数次微分加权范不等式

本站小编 Free考研考试/2021-12-27

变量核奇异积分和分数次微分加权范不等式 杨沿奇, 陶双平西北师范大学数学与统计学院 兰州 730070 Weighted Norm Inequalities of Variable Singular Integrals and Fractional Differentiation Yan Qi YANG, Shuang Ping TAOCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(501 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要TDγ(0 ≤ γ ≤ 1)分别表示变量核奇异积分和分数次微分算子.T*T#分别为T的共轭算子及拟共轭算子.利用球调和多项式展式,本文得到了TDγ-DγT和(T*-T#Dγ在?q,λω(Rn)上的有界性.同时也得到了变量核奇异积分的积T1T2和拟积T1°T2的加权范不等式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-04-10
MR (2010):O174.2
基金资助:国家自然科学基金资助项目(11561062)
通讯作者:陶双平E-mail: taosp@nwnu.edu.cn
作者简介: 杨沿奇,E-mail:yangyanqi521@126.com
引用本文:
杨沿奇, 陶双平. 变量核奇异积分和分数次微分加权范不等式[J]. 数学学报, 2020, 63(4): 381-396. Yan Qi YANG, Shuang Ping TAO. Weighted Norm Inequalities of Variable Singular Integrals and Fractional Differentiation. Acta Mathematica Sinica, Chinese Series, 2020, 63(4): 381-396.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I4/381


[1] Adams D. R., A note on Riesz potentials, Duke Mathematical Journal, 1975, 42:765-778.
[2] Adams D. R., Xiao J., Morrey spaces in harmonic analysis, Arkiv for Matematik, 2012, 50(2):201-230.
[3] Alvarez J., Lakey J., Guzmán-Partida M., Spaces of bounded λ-central mean oscilation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 2000, 51:1-147.
[4] Calderón A. P., Commutators of singular integral operators, Proc. Natl. Acad. Sci., USA, 1965, 53(5):1092-1099.
[5] Campanato S., Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa., 1964, 18:137-160.
[6] Calderón A. P., Zygmund A., On singular integrals, Amer. J. Math., 1956, 78(2):289-309.
[7] Calderón A. P., Zygmund A., Singular integral operators and differential equations, American Journal of Mathematics, 1957, 79(4):901-921.
[8] Calderón A. P., Zygmund A., On singular integrals with variable kernels, Applicable Analysis, 1977, 7(3):221-238.
[9] Chen Y. P., Zhu K., Weighted norm inequality for the singular integral with variable kernel and fractional differentiation, Journal of Mathematical Analysis and Applications, 2015, 423(2):1610-1629.
[10] Christ M., Duoandikoetxea J., Rubio de Francia J., Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations, Duke Mathematical Journal, 1986, 53:189-209.
[11] Chiarenza F., Frasca M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 1987, 7(3-4):273-279.
[12] Feichtinger H., An Elementary Approach to Wiener's third Tauberian Theorem Euclidean n-space, In:Proceedings, Conference at Cortona 1984, Sympo. Math., 29, Academic Press, 1987.
[13] Fazio G. D., Ragusa M., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, Journal of Functional Analysis, 1993, 112(2):241-256.
[14] Grafakos L. Classical and Modern Frouier Analysis, Proceedings, GAT, 249, Springer Science+Business Media, LLC, 2008.
[15] Guliyev V. S., Omarova M. N., Ragusa M. A., Scapellato A., Commutators and generalized local Morrey spaces, Journal of Mathematical Analysis and Applications, 2018, 457(2):1388-1402.
[16] Komori Y., Shirai S., Weighted Morrey spaces and a singular integral operator, Mathematische Nachrichten, 2009, 282(2):219-231.
[17] Lu S. Z., Ding Y., Yan D. Y., Singular integral and related topics, World Scientific., 2007.
[18] Morrey C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 1938, 43(1):126-166.
[19] Murray M., Commutators with fractional differentiation and BMO Sobolev spaces, Indiana Univ. Math. J., 1985, 34(1):205-215.
[20] Strichartz R. S., Bounded mean oscillations and Sobolev spaces, Indiana Univ. Math. J., 1980, 29(4):539-558.
[21] Tan Y. X., Liu L. Z., Weighted boundedness of multilinear operator associated to singular integral operator with variable Calderón-Zygmund Kernel, Revista de la Real Academia de Ciencias Exactas Fiscas y Naturales Serie A-Mathematicas, 2017, 111(4):931-946.
[22] Tao S. P., Yang Y. Q., Boundedness of singular integrals with variable kernel and fractional differentiations on the weighted Morrey-Herz spaces, Journal of Jilin University Science Edition, 2016, 54(4):677-684.
[23] Triebel H., Local Function Spaces, Heat and Navier-Stokes Equations, EMS Tracts. Math., 2013, 20.
[24] Guliyev V. S., Hasanov J. J., Zeren Y., On the limiting case for boundedness of the B-Riesz potential in B-Morrey spaces, Analysis Mathematica, 2009, 35(2):87-97.
[25] Xue C., Zhu K., Chen Y., Boundedness for the singular integral with variable kernel and fractional differentiation on weighted Morrey spaces, Analysis in Theory and Applications, 2016, 32(3):205-214.
[26] Yang Y. Y., Tao S. P., Weak estimates of singular integrals with variable kernel and fractional differentiation on Morrey-Herz spaces, Journal of Function Spaces, 2017, Article ID 4340805, 10 pages.
[27] Yang Y. Y., Tao S. P., Singular integrals with variable kernel and fractional differentiation in homogeneous Morrey-Herz-type Hardy spaces with variable exponents, Open Mathematics, 2018, 16:326-345.
[28] Yang Y. Y., Tao S. P., Weighted norm inequalities of θ-type Calderon-Zygmund operators and commutators on λ-central Morrey space, Journal of Computational Analysis and Applications, 2020, 28(3):491-501.
[29] Yu X., Zhang H. H., Zhao G. P., Weighted boundedness of some integrals operators on weighted λ-central Morrey space, Applied Mathematics-A Journal of Chinese Universities Series B, 2016, 31(3):331-342.
[30] Zhao K., Dong P. J., Shao S., Weighted boundedness of commutators of the fractional integral on λ-central Morrey spaces, Journal of Shandong University (Natural Science), 2011, 46(12):88-92.

[1]高贵连, 樊云. 多线性Hausdorff算子的Sharp估计[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 153-160.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23618
相关话题/分数 数学 统计学院 西北师范大学 算子