删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

3×3阶上三角算子矩阵的点谱、剩余谱和连续谱

本站小编 Free考研考试/2021-12-27

3×3阶上三角算子矩阵的点谱、剩余谱和连续谱 吴秀峰, 黄俊杰内蒙古师范大学 数学科学学院 呼和浩特 010022 The Point, Residual and Continuous Spectrum of 3×3 Upper Triangular Operator Matrices Xiu Feng WU, Jun Jie HUANGSchool of Mathematical Science, Inner Monogolia Normal University, Hohhot 010022, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(514 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要MD,E,F=为Hilbert空间H1H2H3上的上三角算子矩阵.我们借助对角元A,BC的谱性质给出了σ*MD,E,F)=σ*A)∪σ*B)∪σ*C)对任意DBH2H1),EBH3H1),FBH3H2)均成立的充要条件,其中σ*代表某类特定的谱,如点谱、剩余谱和连续谱等.此外,给出了一些例证.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-11-09
MR (2010):O177.1
O177.7
基金资助:国家自然科学基金项目(11761052);内蒙古自治区自然科学基金(2018BS01001);内蒙古自治区高等学校科学研究重点项目(NJZZ18018);内蒙古师范大学引进人才项目(2017YJRC018)
通讯作者:黄俊杰E-mail: huangjunjie@imu.edu.cn
作者简介: 吴秀峰,E-mail:wuxiufeng68@163.com
引用本文:
吴秀峰, 黄俊杰. 3×3阶上三角算子矩阵的点谱、剩余谱和连续谱[J]. 数学学报, 2019, 62(6): 817-832. Xiu Feng WU, Jun Jie HUANG. The Point, Residual and Continuous Spectrum of 3×3 Upper Triangular Operator Matrices. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 817-832.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/817


[1] Ben-Israel A., Greville T. N. E., Generalized Inverses:Theory and Applications (2nd ed), Springer, New York, 2003.
[2] Conway J. B., A Course in Functional Analysis, Springer, New York, 1985.
[3] Barraa M., Boumazgour M., A note on the spectrum of an upper triangular operator matrices, Proc. Amer. Math. Soc., 2003, 133:3083-3088.
[4] Benhida C., Zerouali E. H., Zguitti H., Spectra of upper triangular operator matrices, Proc. Amer. Math. Soc., 2005, 133:3013-3020.
[5] Bai Q., Huang J., Chen A., Weyl type theorems of 2×2 upper triangular operator matrices, J. Math. Anal. Appl., 2006, 434:1065-1076.
[6] Cao X., Weyl's theorem for 3×3 upper triangular operator matrices, Acta Methematica Sinica, Chinese Series, 2006, 49:529-538.
[7] Cao X., Browder spectra for upper triangular operator matrices, J. Math. Anal. Appl., 2008, 342:477-484.
[8] Djordjevi? D. S., Perturbations of spectra of operator matrices, J. Operator Theory., 2002, 48:467-486.
[9] Djordjevi? S. V., Han Y. M., A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc., 2002, 131:2543-2547.
[10] Djordjevi? S. V., Zguitti H., Essential point spectra of operator matrices trough local spectral theory, J. Math. Anal. Appl., 2008, 338:285-291.
[11] Du H., Pan J., Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc., 1994, 121:761-766.
[12] Han J. K., Lee H. Y., Lee W. Y., Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc., 2000, 128:119-123.
[13] Hwang I., Lee W., The boundedness below of 2×2 upper triangular operator matrices, Integr. Equ. Oper. Theory., 2001, 39:267-276.
[14] Hai G., Chen A., The residual spectrum and continuous spectrum of upper triangular operator matrices, Filomat., 2014, 28:65-71.
[15] Li Y., Sun X., Du H., The intersection of left (right) spectra of 2×2 upper triangular operator matries, Linear Algebra Appl., 2006, 418:112-121.
[16] Huang J., Liu A., Chen A., Spectra of 2×2 upper triangular operator matrices, Filomat., 2016, 30:3587-3599.
[17] Wu X., Huang J., Chen A., Self-adjoint perturbations of spectra for upper triangular operator matrices, Linear Algebra Appl., 2017, 531:1-21.
[18] Wu X., Huang J., Chen A., Spectra of 3×3 upper triangular operator matrices, Functional Analysis and its Applications., 2017, 51:135-143.
[19] Zhang S., Wu Z., Zhong H., Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl., 2010, 433:653-661.
[20] Zerouali E. H., Zguitti H., Perturbation of spectra of operator matrices and local spectral theory, J. Math. Anal. Appl., 2006, 324:992-1005.

[1]黄俊杰, 张璐, 吴秀峰, 阿拉坦仓. 缺项3×3上三角算子矩阵的可能谱[J]. 数学学报, 2017, 60(2): 261-272.
[2]吴秀峰, 黄俊杰, 阿拉坦仓. 三阶上三角算子矩阵点谱,连续谱和剩余谱的扰动[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 423-430.
[3]纪友清;王鹏辉;徐新军. 算子的本性相似[J]. Acta Mathematica Sinica, English Series, 2005, 48(2): 259-266.
[4]林发兴;林振声. 线性系统的纯点谱和弱Lyapunov相似[J]. Acta Mathematica Sinica, English Series, 1996, 39(1): 1-5.
[5]单佑民. 线性有界算子的稳定点谱[J]. Acta Mathematica Sinica, English Series, 1989, 32(5): 585-589.
[6]李浩. {B~n}_(n=1)~∞是收敛序列的等价条件[J]. Acta Mathematica Sinica, English Series, 1986, 29(2): 285-288.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23520
相关话题/数学 内蒙古师范大学 序列 系统 科学学院