删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Hilbert C*-模上可共轭算子的并联和

本站小编 Free考研考试/2021-12-27

Hilbert C*-模上可共轭算子的并联和 罗未, 宋传宁, 许庆祥上海师范大学数学系 上海 200234 The Parallel Sum for Adjointable Operators on Hilbert C*-Modules Wei LUO, Chuan Ning SONG, Qing Xiang XUDepartment of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(532 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了Hilbert C*-模上可共轭算子的并联和,推广了矩阵和Hilbert空间上有界线性算子的一些相关结果.通过举例说明:存在一个Hilbert C*-模H,以及H上的两个可共轭的正算子AB,使得算子方程A1/2=(A+B1/2XXLH)无解,其中LH)为H上的可共轭算子全体.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-04-15
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11671261);上海市科委基金资助项目(18590745200)
通讯作者:许庆祥E-mail: qxxu@shnu.edu.cn
作者简介: 罗未,E-mail:luoweipig1@163.com;宋传宁,E-mail:songning@shnu.edu.cn
引用本文:
罗未, 宋传宁, 许庆祥. Hilbert C*-模上可共轭算子的并联和[J]. 数学学报, 2019, 62(4): 541-552. Wei LUO, Chuan Ning SONG, Qing Xiang XU. The Parallel Sum for Adjointable Operators on Hilbert C*-Modules. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 541-552.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/541


[1] Anderson Jr. W. N., Shorted operators, SIAM J. Appl. Math., 1971, 20:520-525.
[2] Anderson Jr. W. N., Duffin R. J., Series and parallel addition of matrices, J. Math. Anal. Appl., 1969, 26:576-594.
[3] Anderson Jr. W. N., Schreiber M., The infimum of two projections, Acta Sci. Math. (Szeged), 1972, 33:165-168.
[4] Anderson Jr. W. N., Trapp G. E., Shorted operators Ⅱ, SIAM J. Appl. Math., 1975, 28:60-71.
[5] Ando T., Hayashi T., A characterization of the operator-valued triangle equality, J. Operator Theory, 2007, 58:463-468.
[6] Antezana J., Corach G., Stojanoff D., Bilateral shorted operators and parallel sums, Linear Algebra Appl., 2006, 414:570-588.
[7] Berkics P., On parallel sum of matrices, Linear Multilinear Algebra, 2017, 65:2114-2123.
[8] Butler C. A., Morley T. D., A note on the shorted operator, SIAM J. Matrix Anal. Appl., 1988, 9:147-155.
[9] Djikic M. S., Extensions of the Fill-Fishkind formula and the infimum-parallel sum relation, Linear Multilinear Algebra., 2015, 64:2335-2349.
[10] Douglas R., On majorization, factorization, and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc., 1966, 17:413-415.
[11] Fang X., Moslehian M. S., Xu Q., On majorization and range inclusion of operators on Hilbert C*-modules, Linear Multilinear Algebra, 2018, 66:2493-2500.
[12] Fillmore P. A., Williams J. P., On operator ranges, Adv. Math., 1971, 7:254-281.
[13] Lance E. C., Hilbert C*-modules-A Toolkit for Operator Algebraists, Cambridge University Press, Cambridge, 1995.
[14] Mitra S. K., Odell P. L., On parallel summabillty of matrices, Linear Algebra Appl., 1986, 74:239-255.
[15] Morley T. D., An alternative approach to the parallel sum, Adv. Appl. Math., 1989, 10:358-369.
[16] Pedersen G. K., C*-algebras and Their Automorphism Groups (London Math. Soc. Monographs 14), Academic Press, New York, 1979.
[17] Wegge-Olsen N. E., K-theory and C*-algebras:A Friendly Approach, Oxford Univ. Press, Oxford, 1993.
[18] Xu Q., Fang X., A note on majorization and range inclusion of adjointable operators on Hilbert C*-modules, Linear Algebra Appl., 2017, 516:118-125.
[19] Xu Q., Chen Y., Song C., Representations for weighted Moore-Penrose inverses of partitioned adjointable operators, Linear Algebra Appl., 2013, 438:10-30.
[20] Xu Q., Sheng L., Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl., 2008, 428:992-1000.
[21] Xu Q., Sheng L., Gu Y., The solutions to some operator equations, Linear Algebra Appl., 2008, 429:1997- 2024.
[22] Xu Q., Wei Y., Gu Y., Sharp norm-estimations for Moore-Penrose inverses of stable perturbations of Hilbert C*-module operators, SIAM J. Numer. Anal., 2010, 47:4735-4758.
[23] Xu Q., Zhang X., The generalized inverses AT,S(1,2) of the adjointable operators on the Hilbert C*-modules, J. Korean Math. Soc., 2010, 47:363-372.

[1]王中华, 张建华. 多重C*-动力系统在Hilbert C*-模上的膨胀[J]. 数学学报, 2016, 59(6): 859-864.
[2]高福根, 张倩. 准Hilbert C*-模中Dunkl-Williams不等式的推广[J]. 数学学报, 2016, 59(1): 57-64.
[3]姚喜妍. Hilbert C*-模中g-框架的一些性质[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 1-8.
[4]岑建苗;. 环上矩阵广义Moore-Penrose逆的存在性[J]. Acta Mathematica Sinica, English Series, 2006, 49(3): 549-558.
[5]陈军;陈建龙. 具有广义分解的态射的广义逆[J]. Acta Mathematica Sinica, English Series, 2001, 44(5): 909-916.
[6]曹永知;朱萍. 关于具有泛分解的态射的广义逆[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 559-566.
[7]江声远;刘晓冀. 具有泛分解的态射的广义逆[J]. Acta Mathematica Sinica, English Series, 1999, 42(2): -.
[8]李桃生. 有满单分解态射的Moore-Penrose逆[J]. Acta Mathematica Sinica, English Series, 1993, 36(1): 60-67.
[9]庄瓦金. 范畴中态射的广义逆[J]. Acta Mathematica Sinica, English Series, 1988, 31(1): 39-45.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23446
相关话题/数学 上海师范大学 数学系 系统 动力