删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四元Heisenberg群上次拉普拉斯算子的m幂次的基本解

本站小编 Free考研考试/2021-12-27

四元Heisenberg群上次拉普拉斯算子的m幂次的基本解 王海蒙, 周璇, 赵玉娟江苏第二师范学院数学与信息技术学院 南京 210013 The Fundamental Solution for the m-th Powers of the sub-Laplacian on the Quaternionic Heisenberg Group Hai Meng WANG, Xuan ZHOU, Yu Juan ZHAODepartment of Mathematics and Information Technology, Jiangsu Second Normal University, Nanjing 210013, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(508 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了四元Heisenberg群上次拉普拉斯算子的m幂次的基本解,该结论是Heisenberg群上结果的推广.本文利用了四元Heisenberg群上的Fourier变换理论构造了该群上次拉普拉斯算子的m幂次的基本解,并且给出了基本解的积分表示.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-02-25
MR (2010):O174.5
基金资助:江苏省高校自然科学基金面上项目(18KJD0004)
作者简介: 王海蒙,E-mail:wanghaimeng1027@163.com;周璇,E-mail:zhouxuanseu@126.com;赵玉娟,E-mail:d0801@njupt.edu.cn
引用本文:
王海蒙, 周璇, 赵玉娟. 四元Heisenberg群上次拉普拉斯算子的m幂次的基本解[J]. 数学学报, 2020, 63(3): 229-244. Hai Meng WANG, Xuan ZHOU, Yu Juan ZHAO. The Fundamental Solution for the m-th Powers of the sub-Laplacian on the Quaternionic Heisenberg Group. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 229-244.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I3/229


[1] Beals R., Greiner P., Calculus on Heisenberg manifolds, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1988.
[2] Beals R., Bernard G., Greiner P., The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes, Adv. Math., 1996, 121(2):288-345.
[3] Beals R., Gaveau B., Greiner P., et al., The Laguerre calculus on the Heisenberg group, II, Bull. Sci. Math., 1986, 110:225-288.
[4] Benson C., Dooley A. H., Ratcliff G., Fundamental solution for powers of the Heisenberg sub-Laplacian, Illinois J. Math., 1993, 37(3):455-476.
[5] Berenstein C., Chang D. C., Tie J., Laguerre Calculus and Its Applications on the Heisenberg Group, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2001.
[6] Chang D. C., Tie J., Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group, J. Geom. Anal., 2000, 10(4):653-678.
[7] Chang D. C., Tie J., A note on Hermite and subelliptic operators, Acta Math. Sin., 2005, 21(4):803-818.
[8] Chang D. C., Chang S. C., Tie J., Laguerre calculus and Paneitz operator on the Heisenberg group, Sci. China, 2009, 52(12):2549-2569.
[9] Chang D. C., Markina I., Quaternion H-type group and differential operator △λ, Sci. China Ser. A, 2008, 51(4):523-540.
[10] Cygan J., Heat kernels for class 2 nilpotent groups, Studia Math., 1979, 64(3):227-238.
[11] Folland G. B., A fundamental solution for a subelliptic operator, Bull. Am. Math. Soc., 1973, 79(2):373-376.
[12] Folland G. B., Stein E. M., Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 1974, 27(4):429-522.
[13] Gaveau B., Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math., 1977, 139(1-2):95-153.
[14] Hulanicki A., The distribution of energy in the Brownian motion in the Gaussian field and analytichypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math., 1976, 56(2):165-173.
[15] Kumar A., Mishra M. M., Powers of sub-Laplacian on step two nilpotent Lie groups, J. Geom. Anal., 2013, 23(3):1559-1570.
[16] Peloso M., Ricci F., Analysis of the Kohn Laplacian on quadratic CR manifolds, J. Funct. Anal., 2003, 203(2):321-355.
[17] Stanton N. K., The solution of the ∂-Neumann problem in a strictly pseudoconvex Siegel domain, Invent. Math., 1981, 65(1):137-174.
[18] Shi Y., Wang W., The Szegö kernel for k-CF functions on the quaternionic Heisenberg group, Appl. Anal., 2017, 96(4):1-19.
[19] Tie J., Wong M. W., The heat kernel and Green functions of sub-Laplacians on the quaternion Heisenberg group, J. Geom. Anal., 2009, 19(1):191-210.
[20] Wang, W., The k-Cauchy-Fueter complex, Penrose transformation and Hartogs phenomenon for quaternionic k-regular functions, J. Geom. phys., 2010, 60(3):513-530.
[21] Wang W., The tangential Cauchy-Fueter complex on the quaternionic Heisenberg group, J. Geom. phys., 2011, 61(1):363-380.
[22] Wang W., On the tangential Cauchy-Fueter operators on nondegenerate quadratic hypersurfaces in H2, Math. Nachr., 2013, 286(13):1353-1376.
[23] Wang H. M., Xie F. F., Fundamental solution of Laplacian on the general nilpotent groups of step two (in Chinese), Appl. Math. J. Chinese Univ. Ser. A, 2013, 28(3):347-358.
[24] Wang H. M., Wang W., On octonionic regular functions and the Szegö projection on the octonionic Heisenberg group, Complex Anal. Oper. Theory, 2014, 8(6):1285-1324.
[25] Wang H. M., Wu Q. Y., On fundamental solution for powers of the sub-Laplacian on the Heisenberg group, Appl. Math. J. Chinese Univ. Ser. B, 2017, 32(3):365-378.
[26] Zhu L., A fundamental solution for the Laplace operator on the quaternionic Heisenberg group, Acta Math. Sci., 2002, 22(3):369-378.

[1]管训贵. Pell方程组x2-(c2-1)y2=y2-2p1p2p3z2=1的公解[J]. 数学学报, 2020, 63(2): 157-170.
[2]高文华, 江寅生. 某些抛物型算子在加权Lp空间和Morrey空间上的估计[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 699-710.
[3]屈爱芳;. Tricomi算子的基本解[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 625-632.
[4]秦惠增;商妮娜;. 一类双曲型方程的Huygens原理[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 797-802.
[5]钮鹏程;张慧清;罗学波. Heisenberg群上的Hardy不等式与Pohozaev恒等式[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 279-290.
[6]刘建明;彭立中. 有界对称域上的加权Plancherel公式[J]. Acta Mathematica Sinica, English Series, 2002, 45(2): 215-220.
[7]吴发恩. 球面上热核的渐近展开[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 145-015.
[8]吴发恩. 球面上热核的渐近展开[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -.
[9]吴发恩. de Rham-Hodge-Signature算子的局部指标定理[J]. Acta Mathematica Sinica, English Series, 1996, 39(6): -.
[10]冯学尚. 关于Tréves不可解算子的一个注记[J]. Acta Mathematica Sinica, English Series, 1993, 36(1): 82-89.
[11]杨庆季. Dirichlet 型与反射扩散过程[J]. Acta Mathematica Sinica, English Series, 1992, 35(2): 240-250.
[12]乐茂华. 关于丢番图方程x~2-D=p~n的解数[J]. Acta Mathematica Sinica, English Series, 1991, 34(3): 378-387.
[13]凌岭. 超双曲型方程的解的性质与 Dirichlet 问题[J]. Acta Mathematica Sinica, English Series, 1990, 33(4): 497-504.
[14]乐茂华. 实二次城 Q(■)类数的可除性[J]. Acta Mathematica Sinica, English Series, 1990, 33(4): 565-574.
[15];. 数学学报 第32卷(1989) 总目录[J]. Acta Mathematica Sinica, English Series, 1989, 32(6): 859-864.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23597
相关话题/数学 空间 信息技术学院 过程 江苏