摘要本文研究了四元Heisenberg群上次拉普拉斯算子的m幂次的基本解,该结论是Heisenberg群上结果的推广.本文利用了四元Heisenberg群上的Fourier变换理论构造了该群上次拉普拉斯算子的m幂次的基本解,并且给出了基本解的积分表示. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-02-25 | | 基金资助:江苏省高校自然科学基金面上项目(18KJD0004)
| 作者简介: 王海蒙,E-mail:wanghaimeng1027@163.com;周璇,E-mail:zhouxuanseu@126.com;赵玉娟,E-mail:d0801@njupt.edu.cn |
[1] Beals R., Greiner P., Calculus on Heisenberg manifolds, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1988. [2] Beals R., Bernard G., Greiner P., The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes, Adv. Math., 1996, 121(2):288-345. [3] Beals R., Gaveau B., Greiner P., et al., The Laguerre calculus on the Heisenberg group, II, Bull. Sci. Math., 1986, 110:225-288. [4] Benson C., Dooley A. H., Ratcliff G., Fundamental solution for powers of the Heisenberg sub-Laplacian, Illinois J. Math., 1993, 37(3):455-476. [5] Berenstein C., Chang D. C., Tie J., Laguerre Calculus and Its Applications on the Heisenberg Group, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2001. [6] Chang D. C., Tie J., Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group, J. Geom. Anal., 2000, 10(4):653-678. [7] Chang D. C., Tie J., A note on Hermite and subelliptic operators, Acta Math. Sin., 2005, 21(4):803-818. [8] Chang D. C., Chang S. C., Tie J., Laguerre calculus and Paneitz operator on the Heisenberg group, Sci. China, 2009, 52(12):2549-2569. [9] Chang D. C., Markina I., Quaternion H-type group and differential operator △λ, Sci. China Ser. A, 2008, 51(4):523-540. [10] Cygan J., Heat kernels for class 2 nilpotent groups, Studia Math., 1979, 64(3):227-238. [11] Folland G. B., A fundamental solution for a subelliptic operator, Bull. Am. Math. Soc., 1973, 79(2):373-376. [12] Folland G. B., Stein E. M., Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 1974, 27(4):429-522. [13] Gaveau B., Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math., 1977, 139(1-2):95-153. [14] Hulanicki A., The distribution of energy in the Brownian motion in the Gaussian field and analytichypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math., 1976, 56(2):165-173. [15] Kumar A., Mishra M. M., Powers of sub-Laplacian on step two nilpotent Lie groups, J. Geom. Anal., 2013, 23(3):1559-1570. [16] Peloso M., Ricci F., Analysis of the Kohn Laplacian on quadratic CR manifolds, J. Funct. Anal., 2003, 203(2):321-355. [17] Stanton N. K., The solution of the ∂-Neumann problem in a strictly pseudoconvex Siegel domain, Invent. Math., 1981, 65(1):137-174. [18] Shi Y., Wang W., The Szegö kernel for k-CF functions on the quaternionic Heisenberg group, Appl. Anal., 2017, 96(4):1-19. [19] Tie J., Wong M. W., The heat kernel and Green functions of sub-Laplacians on the quaternion Heisenberg group, J. Geom. Anal., 2009, 19(1):191-210. [20] Wang, W., The k-Cauchy-Fueter complex, Penrose transformation and Hartogs phenomenon for quaternionic k-regular functions, J. Geom. phys., 2010, 60(3):513-530. [21] Wang W., The tangential Cauchy-Fueter complex on the quaternionic Heisenberg group, J. Geom. phys., 2011, 61(1):363-380. [22] Wang W., On the tangential Cauchy-Fueter operators on nondegenerate quadratic hypersurfaces in H2, Math. Nachr., 2013, 286(13):1353-1376. [23] Wang H. M., Xie F. F., Fundamental solution of Laplacian on the general nilpotent groups of step two (in Chinese), Appl. Math. J. Chinese Univ. Ser. A, 2013, 28(3):347-358. [24] Wang H. M., Wang W., On octonionic regular functions and the Szegö projection on the octonionic Heisenberg group, Complex Anal. Oper. Theory, 2014, 8(6):1285-1324. [25] Wang H. M., Wu Q. Y., On fundamental solution for powers of the sub-Laplacian on the Heisenberg group, Appl. Math. J. Chinese Univ. Ser. B, 2017, 32(3):365-378. [26] Zhu L., A fundamental solution for the Laplace operator on the quaternionic Heisenberg group, Acta Math. Sci., 2002, 22(3):369-378.
|
[1] | 管训贵. Pell方程组x2-(c2-1)y2=y2-2p1p2p3z2=1的公解[J]. 数学学报, 2020, 63(2): 157-170. | [2] | 高文华, 江寅生. 某些抛物型算子在加权Lp空间和Morrey空间上的估计[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 699-710. | [3] | 屈爱芳;. Tricomi算子的基本解[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 625-632. | [4] | 秦惠增;商妮娜;. 一类双曲型方程的Huygens原理[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 797-802. | [5] | 钮鹏程;张慧清;罗学波. Heisenberg群上的Hardy不等式与Pohozaev恒等式[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 279-290. | [6] | 刘建明;彭立中. 有界对称域上的加权Plancherel公式[J]. Acta Mathematica Sinica, English Series, 2002, 45(2): 215-220. | [7] | 吴发恩. 球面上热核的渐近展开[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 145-015. | [8] | 吴发恩. 球面上热核的渐近展开[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -. | [9] | 吴发恩. de Rham-Hodge-Signature算子的局部指标定理[J]. Acta Mathematica Sinica, English Series, 1996, 39(6): -. | [10] | 冯学尚. 关于Tréves不可解算子的一个注记[J]. Acta Mathematica Sinica, English Series, 1993, 36(1): 82-89. | [11] | 杨庆季. Dirichlet 型与反射扩散过程[J]. Acta Mathematica Sinica, English Series, 1992, 35(2): 240-250. | [12] | 乐茂华. 关于丢番图方程x~2-D=p~n的解数[J]. Acta Mathematica Sinica, English Series, 1991, 34(3): 378-387. | [13] | 凌岭. 超双曲型方程的解的性质与 Dirichlet 问题[J]. Acta Mathematica Sinica, English Series, 1990, 33(4): 497-504. | [14] | 乐茂华. 实二次城 Q(■)类数的可除性[J]. Acta Mathematica Sinica, English Series, 1990, 33(4): 565-574. | [15] | ;. 数学学报 第32卷(1989) 总目录[J]. Acta Mathematica Sinica, English Series, 1989, 32(6): 859-864. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23597
点星网与度量空间的映像林寿1,黄燕晖2,张静21.宁德师范学院数理学院宁德352100;2.闽南师范大学数学与统计学院漳州363000Point-starNetworksandImagesofMetricSpacesShouLIN1,YanHuiHUANG2,JingZHANG21.Schoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间度量广义逆的乘积扰动杜法鹏1,薛以锋21.徐州工程学院数学与物理科学学院徐州221008;2.华东师范大学算子代数研究中心上海市核心数学与实践重点实验室华东师范大学数学科学学院上海200241MultiplicativePerturbationsofMetricGeneralized ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27渐近Teichmller空间的不唯一性黄志勇,周泽民中国人民大学数学系北京100872NonuniquenessPropertiesonAsymptoticTeichmullerSpaceZhiYongHUANG,ZeMinZHOUDepartmentofMathematics,Renm ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非时齐马氏过程的Liggett-Stroock不等式宋娟1,张铭21.湖北经济学院信息管理与统计学院湖北金融发展与金融安全研究中心武汉430205;2.中国政法大学科学技术教学部北京102249Liggett-StroockInequalitiesforTimeInhomogeneousMarkov ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法蔡钢重庆师范大学数学科学学院重庆401331ViscosityIterativeAlgorithmsforaNewVariationalInequalityProblemandFixedPointProbleminHilbertSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多复变中正规权Zygmund空间上的几个性质黎深莲,张学军湖南师范大学数学与统计学院长沙410006SeveralPropertiesontheNormalWeightZygmundSpaceinSeveralComplexVariablesShenLianLI,XueJunZHANGCollege ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Fock空间上的Hankel算子王晓峰1,夏锦1,陈建军21.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2.肇庆学院数学与统计学院肇庆526061HankelOperatorsonGeneralizedFockSpacesXiaoFengWANG1,JinXIA1,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27类拟b-距离空间中几类循环压缩映射不动点定理司马傲蕾,贺飞,路宁内蒙古大学数学科学学院呼和浩特010021FixedPointTheoremsforSeveralCyclic-ContractiveMappingsinDislocatedQuasi-b-metricSpacesAoLeiSIMA,F ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|